Skip to main content
Log in

Study on the Morphology Evolution and Purification of Electrorefined Silicon

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A three-layer process and apparatus have been developed for electrorefining of silicon for solar cell application. The anode is solidified from a hypereutectic solution of copper and MG silicon. At the temperature of operation (1223 K (950 °C)), elements that have an electronegativity greater than that of silicon will remain at the anode (e.g., Cu, B, P, etc.) and then the Cu-Si phase can be used under certain conditions as a filter for purifying silicon with an electrorefining process. According to the stable liquid electrode reactive surface, high current density is possible during electrorefining and such advantages obviously improve the rate of deposition, which is a key point to reach commercial development. Deposited silicon particles are found embedded in electrolyte. Furthermore, with increasing operation time and current density, recombination of silicon particles is revealed and yields silicon balls with a diameter of 2 cm. The analysis of the anode feed and refined silicon shows a remarkable reduction of B and P concentrations, from 12.7 to 2.4 ppmw and 98.6 to 4.3 ppmw, respectively. Besides, particular mention should be made of efficient removal of impurities such as Fe, Mn, and Ti, which are present in significant quantities in the anode feed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Pizzini, M. Acciarri, and S. Binetti: Phys. Status Solidi (a), 2005, vol. 202, pp. 2928–42.

    Article  CAS  ADS  Google Scholar 

  2. M.S. Richard: Prog. Photovolt: Res. Appl., 2006, vol. 14, pp. 443–53.

    Article  Google Scholar 

  3. D.C. Alvin: Sol. Energy Mater. Sol. Cell., 2006, vol. 90, pp. 2170–80.

    Article  Google Scholar 

  4. N. Yuge, H. Baba, and F. Aratani: U.S. Patent 5,182,091, 1993.

  5. P.K. Chandra, B.J. Davidoyce, and S. Frederick: Sol. Energy Mater. Sol. Cell., 2002, vol. 74, pp. 77–89.

    Article  Google Scholar 

  6. I.G. Sharma and T.K. Mukherjee: Metall. Trans. B, 1986, vol. 17B, pp. 395–97.

    Article  CAS  Google Scholar 

  7. H.St.C. Deville: Ann. Chim. Phys., 1854, vol. 43, pp. 31–36.

    Google Scholar 

  8. R. Monnier and J.G. Giocometti: Helv. Chim. Acta, 1964, vol. 47, pp. 345–53.

    Article  CAS  Google Scholar 

  9. R. Monnier and D. Barakat: U.S. Patent 3,219,561, 1965.

  10. U. Cohen and R.A. Huggins: J. Electrochem. Soc., 1976, vol. 123, pp. 381–83.

    Article  CAS  Google Scholar 

  11. U. Cohen: U.S. Patent 3983012, 1976.

  12. U. Cohen: J. Electron. Mater., 1977, vol. 6 pp. 607–43.

    Article  CAS  ADS  Google Scholar 

  13. K. Mitsuhiro, M. Hideo, and M. Mikio: JOM, 1990, vol. 42, pp. 36–37.

    Google Scholar 

  14. R.C. Dorward: J. Appl. Electrochem., 1983, vol. 13, pp. 569–75.

    Article  CAS  Google Scholar 

  15. J.M. Olson and K.L. Carleton: J. Electrochem. Soc., 1981, vol. 128, pp. 2698–99.

    Article  CAS  Google Scholar 

  16. G.M. Rao, D. Ewell, and R.S. Feigelson: J. Electrochem. Soc., 1980, vol. 127, pp. 1940–44.

    Article  CAS  Google Scholar 

  17. G.M. Rao, D. Ewell, and R.S. Feigelson: J. Electrochem. Soc., 1981, vol. 128, pp. 1708–11.

    Article  CAS  Google Scholar 

  18. D. Ewell, R.S. Feigelson, and G.M. Rao: J. Electrochem. Soc., 1983, vol. 130, pp. 1021–25.

    Article  ADS  Google Scholar 

  19. G.M. Haarberg, J. Thonstad, J.J. Egan, R. Oblakowski, and S. Pietrzyk: Light Metals: Proceedings of the Technical Sessions of the TMS Light Metals Committee, 125th TMS Annual Meeting, 1996, pp. 221–25.

  20. J.M. Olson and K.L. Carleton: U.S. Patent 4,448,651, 1984.

Download references

Acknowledgments

This work is financially supported by the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200805331120) and Hunan Provincial Innovation Foundation for Postgraduate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Jia.

Additional information

Manuscript submitted April 16, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, YQ., Jia, M., Tian, ZL. et al. Study on the Morphology Evolution and Purification of Electrorefined Silicon. Metall Mater Trans A 41, 929–935 (2010). https://doi.org/10.1007/s11661-009-0154-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0154-1

Keywords

Navigation