Skip to main content
Log in

Improvement of Wear Resistance in Alumina Matrix Composites Reinforced with Carbon Nanotubes

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Alumina matrix composites reinforced with carbon nanotubes (CNTs) fabricated by CNT purification, mixing, compaction, and sintering processes, and the effects of the CNT addition on wear resistance were investigated in relation to the relative density, hardness, and fracture toughness. Wear resistance and fracture toughness were measured by the dry sliding wear test method and the indentation fracture test method, respectively. Zero to ~3 vol pct of CNTs were homogeneously distributed in the composites, although some pores existed. The wear resistance and fracture toughness increased with an increasing CNT fraction, but the composite specimen containing 3.0 vol pct of CNTs hardly showed an increase over the specimen containing 2.25 vol pct of CNTs. Observations of worn surfaces revealed that the wear mechanism involved both the abrasive and delamination wear modes in the specimens containing 0 to ~0.75 vol pct of CNTs, whereas the surface was worn largely in an abrasive wear mode in the specimens containing 1.5 to ~3.0 vol pct of CNTs. This was because CNTs helped to change the delamination wear mode to the abrasive wear mode by preventing crack initiation and propagation at alumina grains. The fracture toughness increase provided beneficial effects in the resistance to crack initiation and propagation, the reduction in delamination wear on the worn surface, and the consequent improvement in wear resistance. Because the effect of the porosity increase due to the CNT addition unfavorably affected the improvement of wear resistance and fracture toughness in the specimen containing 3.0 vol pct of CNTs, the appropriate level of CNT fraction was 1.5 to ~2.25 vol pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.H. Baughman, A.A. Zakhidov, and W.A. de Heer: Science, 2002, vol. 297, pp. 787–92.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. H. Zhang, Y. Chen, S.-S. Kim, and Y.-S. Lim: Met. Mater. Int., 2008, vol. 14, pp. 269–73.

    Article  CAS  Google Scholar 

  3. Y. Chen, D.-H. Riu, and Y.-S. Lim: Met. Mater. Int., 2008, vol. 14, pp. 385–90.

    Article  CAS  Google Scholar 

  4. M.R. Falvo and G.J. Clary: Nature, 1997, vol. 389, pp. 582–84.

    Article  CAS  PubMed  ADS  Google Scholar 

  5. P.M. Ajayan, L.S. Schadler, C. Giannaris, and A. Rubio: Adv. Mater., 2000, vol. 12, pp. 750–53.

    Article  CAS  Google Scholar 

  6. L. Xu, B.W. Wei, R.X. Ma, J. Liang, X.K. Ma, and D.H. Wu: Carbon, 1999, vol. 37, pp. 855–58.

    Article  CAS  Google Scholar 

  7. A. Peigney, Ch. Laurent, E. Flahaut, and A. Rousset: Ceram. Int., 2000, vol. 26, pp. 677–83.

    Article  CAS  Google Scholar 

  8. J.W. An, D.H. You, and D.S. Lim: Wear, 2003, vol. 255, pp. 677–81.

    Article  CAS  Google Scholar 

  9. D.S. Lim, D.H You, H.J. Choi, S.H. Lim, and H. Jang: Wear, 2005, vol. 259, pp. 539–44.

    Article  CAS  Google Scholar 

  10. C.B. Mo, S.I. Cha, K.T. Kim, K.H. Lee, and S.H. Hong: Mater. Sci. Eng., A, 2005, vol. 395, pp. 124–28.

    Article  Google Scholar 

  11. W.A. Curtin and B.W. Sheldon: Mater. Today, 2004, vol. 7, pp. 44–49.

    Article  CAS  Google Scholar 

  12. R.W. Siegel, S.K. Chang, B.J. Ash, J. Stone, P.M. Ajayan, R.W. Doremus, and L.S. Schadler: Scripta Mater., 2001, vol. 44, pp. 2061–64.

    Article  CAS  Google Scholar 

  13. A. Peigney, Ch. Laurent, O. Dumortier, and A. Rousset: J. Eur. Ceram. Soc., 1998, vol. 18, pp. 1995–2004.

    Article  CAS  Google Scholar 

  14. G. Yamamoto, M. Omori, K. Yokomizo, T. Hashida, and K. Adachi: Mater. Sci. Eng., B, 2008, vol. 148, pp. 265–69.

    Article  CAS  Google Scholar 

  15. H.H.K. Xu and S. Jahanmir: Wear, 1996, vol. 192, pp. 228–32.

    Article  CAS  Google Scholar 

  16. K. Wang, X.-D. Du, K.-T. Youn, Y. Hayashi, C.G. Lee, and B.H. Koo: Met. Mater. Int., 2008, vol. 14, pp. 689–93.

    Article  CAS  Google Scholar 

  17. J. Sedlacek, D. Galussek, P. Svancarek, R. Riedel, A. Atkinson, and X. Wang: J. Eur. Ceram. Soc., 2008, vol. 28, pp. 2983–93.

    Article  CAS  Google Scholar 

  18. N. Zhao, C. He, J. Li, Z. Jiang, and Y. Li: Mater. Res. Bull., 2006, vol. 41, pp. 2204–09.

    Article  CAS  Google Scholar 

  19. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall: J. Am. Ceram. Soc., 1981, vol. 64, pp. 533–38.

    Article  CAS  Google Scholar 

  20. “ASTM G99: Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus,” Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 1993, vol. 03.02, pp. 399–403.

  21. M. Hashimoto, H. Takigawa, and T. Kawakami: 37th MWSP Conf. Proc., ISS, Warrendale, PA, 1996, pp. 275–82.

    Google Scholar 

  22. N.P. Padture and W.A. Curtin: Scripta Mater., 2008, vol. 58, pp. 989–90.

    Article  CAS  Google Scholar 

  23. D. Jiang and A.K. Mukherjee: Scripta Mater., 2008, vol. 58, pp. 991–93.

    Article  CAS  Google Scholar 

  24. D.A. Rigney: Proceeding of ASM Materials Science Seminar, Pittsburgh, PA, ASM International N.V., Almere, Netherlands, 1981, pp. 13–118.

  25. ASM Handbook, vol. 18, Friction, Lubrication, and Wear Technology, ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 175–263.

  26. H.W. Jin, C.G. Park, and M.C. Kim: Scripta Mater., 1999, vol. 41, pp. 589–95.

    Article  CAS  Google Scholar 

  27. B. Hwang, J. Ahn, and S. Lee: Metall. Mater. Trans. A, 2001, vol. 33A, pp. 2933–45.

    Google Scholar 

  28. J.-M. Jang, S.-J. Park, G. Choi, T.-Y. Kwon, and K.-H. Kim: Met. Mater. Int., 2008, vol. 14, pp. 457–63.

    Article  CAS  Google Scholar 

  29. C.P. Dogan and J.A. Hawk: Wear, 1997, vol. 212, pp. 110–18.

    Article  CAS  Google Scholar 

  30. D. Holz, R. Janssen, K. Friedrich, and N. Claussen: J. Eur. Ceram. Soc., 1989, vol. 5, pp. 229–32.

    Article  CAS  Google Scholar 

  31. L. Fang, Y. Gao, S. Si, and Q. Zhou: Wear, 1997, vol. 210, pp. 145–50.

    Article  CAS  Google Scholar 

  32. B.K. Prasad: Mater. Sci. Eng., A., 2007, vol. 456, pp. 373–85.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant-in-aid for the National Core Research Center Program, Pusan National University, Pusan, Korea (No. R15-2006-022-01001-0) funded by the Korea Science and Engineering Foundation (KOSEF), Daejeon, Korea and the Korean Ministry of Education, Science, and Technology, and for the National Research Laboratory Program, Pohang University of Science and Technology, Pohang, Korea (No. ROA-2004-000-10361-0), funded by the KOSEF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Additional information

Manuscript submitted May 7, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.W., Chung, W.S., Sohn, KS. et al. Improvement of Wear Resistance in Alumina Matrix Composites Reinforced with Carbon Nanotubes. Metall Mater Trans A 41, 380–388 (2010). https://doi.org/10.1007/s11661-009-0136-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0136-3

Keywords

Navigation