Skip to main content
Log in

Effects of Cooling Conditions on Tensile and Charpy Impact Properties of API X80 Linepipe Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, four API X80 linepipe steel specimens were fabricated by varying the cooling rate and finish cooling temperature, and their microstructures and crystallographic orientations were analyzed to investigate the effects of the cooling conditions on the tensile and Charpy impact properties. All the specimens consisted of acicular ferrite (AF), granular bainite (GB), and martensite-austenite (MA) constituents. The volume fraction of MA increased with an increasing cooling rate, and the volume fraction and size of MA tended to decrease with an increasing finish cooling temperature. According to the crystallographic orientation analysis data, the effective grain size and unit crack path decreased as fine ACs having a large amount of high-angle grain boundaries were homogeneously formed, thereby leading to the improvement in the Charpy impact properties. The specimen fabricated with the higher cooling rate and lower finish cooling temperature had the highest upper-shelf energy (USE) and the lowest energy transition temperature (ETT), because it contained a large amount of MA homogeneously distributed inside fine AFs, while its tensile properties remained excellent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.E. Hood: Int. J. Pres. Ves. Pip., 1974, vol. 2, pp. 165–78.

    Article  Google Scholar 

  2. R. Deny: Pipeline Technology, Elsevier, Amsterdam, The Netherlands, 2000, vol. I, pp. 1–116.

  3. B.W. Choi, D.H. Seo, and J.I. Jang: Met. Mater. Int., 2009, vol. 15, pp. 373–78.

    Article  CAS  Google Scholar 

  4. M.K. Gräf, H.G. Hillenbrand, C.J. Heckmann, and K.A. Niederhoff: Proc. 13th Int. Offshore and Polar Engineering Conf., Honolulu, HI, International Society of Offshore and Polar Engineers, Cupertino, CA, 2003, pp. 97–104.

  5. Y.M. Kim, S.Y. Shin, H. Lee, B. Hwang, S. Lee, and N.J. Kim: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1731–42.

    Article  CAS  ADS  Google Scholar 

  6. S.K. Kim, Y.M. Kim, Y.J. Lim, and N.J. Kim: Proc. 15th Conf. on Mechanical Behaviors of Materials, Seoul, Korea, Korea Institute of Metals and Materials, Seoul, Korea, 2001, pp. 177–86.

  7. N.J. Kim, A.J. Yang, and G. Thomas: Metall. Trans. A, 1985, vol. 16A, pp. 471–74.

    CAS  ADS  Google Scholar 

  8. I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi: Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworth & Co. Ltd., London, 1988, pp. 80–100.

    Google Scholar 

  9. M. Diaz-Fuentes, A. Iza-Mendia, and I. Gutierrez: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2505–16.

    Article  CAS  ADS  Google Scholar 

  10. “ASTM E8M-08: Standard Test Methods for Tension Testing of Metallic Materials,” Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 2008, vol. 03.01, pp. 1–25.

  11. “ASTM Standard E23-07: Standard Test Methods for Notched Bar Impact Testing of Metallic Materials,” Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 2006, vol. 03.01, pp. 1–27.

  12. W. Oldfield: ASTM Standardization News, 1975, vol. 3, pp. 24–29.

  13. H.K.D.H. Bhadeshia: Bainite in Steels, IOM Communications, Ltd., London, 2001, pp. 1–454.

    Google Scholar 

  14. C.H. Lee, H.K.D.H. Bhadeshia, and H.-C. Lee: Mater. Sci. Eng., 2003, vol. A360, pp. 249–57.

    CAS  Google Scholar 

  15. M.C. Zhao, K. Yang, and Y.-Y. Shan: Mater. Sci. Eng., 2002, vol. A335, pp. 14–20.

    CAS  Google Scholar 

  16. M.A. Linaza, J.L. Romero, J.M. Rodriguez-Ibabe, and J.J. Urcola: Scripta Mater., 1995, vol. 32, pp. 395–400.

    Article  CAS  Google Scholar 

  17. K.M. Wu and M. Enomoto: Scripta Mater., 2002, vol. 46, pp. 569–74.

    Article  CAS  Google Scholar 

  18. D.W. Suh, C.S. Oh, and S.J. Kim: Met. Mater. Int., 2008, vol. 14, pp. 175–83.

    Article  Google Scholar 

  19. I.D. Choi, D.M. Bruce, D.K. Matlock, and J.G. Speer: Met. Mater. Int., 2008, vol. 14, pp. 139–47.

    Article  CAS  Google Scholar 

  20. M. Umemoto, Z.H. Guo, and I. Tamura: Mater. Sci. Technol., 1987, vol. 3, pp. 249–55.

    CAS  Google Scholar 

  21. T. Hayashi, F. Kawabata, and K. Amano: Proc. Materials Solution ‘97 on Accelerated Cooling/Direct Quenching Steels, ASM INTERNATIONAL, Materials Park, OH, 1997, pp. 93–99.

  22. G. Krauss and S.W. Thompson: ISIJ, 1995, vol. 35, pp. 937–45.

    Article  CAS  Google Scholar 

  23. B. Hwang, Y.M. Kim, S. Lee, N.J. Kim, and S.S. Ahn: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 725–39.

    CAS  Google Scholar 

  24. S.W. Thompson, D.J. Colvin, and G. Krauss: Metall. Trans. A, 1990, vol. 16A, pp. 1493–1507.

    ADS  Google Scholar 

  25. F.T. Han, B.C. Hwang, D.W. Suh, Z.C. Wang, D.L. Lee, and S.J. Kim: Met. Mater. Int., 2008, vol. 14, pp. 667–73.

    Article  CAS  Google Scholar 

  26. Z. Tang and W. Strumpf: Mater. Charact., 2008, vol. 59, pp. 717–28.

    Article  CAS  Google Scholar 

  27. M. Honjo and Y. Saito: ISIJ Int., 2000, vol. 40, pp. 914–19.

    Article  CAS  Google Scholar 

  28. H.W. Swift: J. Mech. Phys. Solids, 1952, vol. 1, pp. 1–16.

    Article  ADS  Google Scholar 

  29. J.H. Hollomon: Trans. AIME, 1945, vol. 162, pp. 268–90.

    Google Scholar 

  30. T. Araki: Atlas for Bainitic Microstructures, ISIJ, Tokyo, 1992, vol. 1, pp. 1–165.

  31. J.Y. Koo, M.J. Luton, N.V. Bangaru, R.A. Petkovic, D.P. Fairchild, C.W. Petersen, H. Asahi, T. Hara, Y. Terada, M. Sugiyama, H. Tamehiro, Y. Komizo, S. Okaguchi, M. Hamada, A. Yamamoto, and I. Takeuchi: Proc. of 13th Int. Offshore and Polar Engineering Conf., Honolulu, HI, International Society of Offshore and Polar Engineers, Cupertino, CA, 2003, pp. 10–18.

  32. M. Toyoda and R. Deny: Proc. of Int. Pipe Dreamer’s Conf., Scientific Surveys, Ltd., Yokohama, Japan, 2002, pp. 1–441.

  33. N. Okumura: Met. Sci., 1983, vol. 17, pp. 581–89.

    Article  CAS  Google Scholar 

  34. F.B. Pickering and T. Gladman: ISI Spec. Rep., 1961, vol. 81, pp. 10–20.

    Google Scholar 

  35. X.Z. Zhang and J.F. Knott: Acta Mater., 1999, vol. 47, pp. 3483–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Laboratory Program (Grant No. ROA-2004-000-10361-0(2008)) funded by the Korea Science and Engineering Foundation (KOSEF) and by POSCO under Contract No. 2007Y202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Additional information

Manuscript submitted June 21, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, S.Y., Shin, S.Y., Lee, S. et al. Effects of Cooling Conditions on Tensile and Charpy Impact Properties of API X80 Linepipe Steels. Metall Mater Trans A 41, 329–340 (2010). https://doi.org/10.1007/s11661-009-0135-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0135-4

Keywords

Navigation