Skip to main content
Log in

A Semianalytical Thermal Model for Fiction Stir Welding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

An Erratum to this article was published on 08 January 2010

Abstract

The main difficulty in the formulation of any model for friction stir welding (FSW) is due to the high coupling between thermal and mechanical phenomena. In the analytical models present in the literature, the fundamental unknown parameter, under the assumption of sticking between the tool/matrix interface, is the yield shear stress, which is temperature dependent. For this reason, any fully analytical model is unable to predict the temperatures for conditions not supported by measurements of the heat input. In this work a semianalytical thermal model for FSW is proposed. The formulation of heat flow during the welding process is based on generic solutions of the differential equation for heat conduction in a solid body, formulated for a point heat source with constant linear velocity. The heat generation was considered as a function of the tool-matrix interface temperature, which is calculated by means of a numerical routine written in Matlab code. Comparison with the experimental measurements taken from the literature shows that the results from the present semianalytical model are in good agreement with the test data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Matlab is a trademark of The MathWorks, Natick, MA.

Abbreviations

ρ :

density, g/m3

c p :

specific heat capacity, J/(g·°C)

k :

thermal conductivity, W/(m·°C)

α :

diffusion coefficient, m2/s

Q int :

volumetric heat source due to plastic dissipation, W/m3

Q :

heat generation due to frictional and plastic dissipation, W

Q workpiece :

heat absorbed by the workpiece, W

T :

temperature, °C

T 0 :

initial temperature, °C

T M :

melting temperature, °C

q :

heat flux, W/m2

v :

welding speed, m/s

r :

radial distance from the tool center, m

H :

plate thickness, m

η :

thermal efficiency of the process

q total :

heat flux due to plastic and frictional dissipation, W/m2

q plastic :

local “surface plastic heat flux,” W/m2

q friction :

local surface heat flux, W/m2

ω :

tool angular rotation speed, rad/s

δ :

contact state variable

τyield :

yield shear stress, Pa

τfriction :

friction shear stress, Pa

τ0 :

fitting parameter, Pa

A :

tool surface into contact with the workpiece, m2

T* :

tool/matrix interface temperature, °C

β :

tool shoulder cone angle, deg

R sh :

tool shoulder radius, m

R p :

tool pin radius, m

H p :

tool pin height, m

R* :

model parameter (radial distance from the tool center at which the temperature T* is calculated), m

References

  1. R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia: Prog. Mater. Sci., 2008, vol. 53, pp. 980–1023.

    Article  CAS  Google Scholar 

  2. S. Lim, S. Kim, C.-G. Lee, and S. Kim: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1977–80.

    Article  CAS  Google Scholar 

  3. Y. Uematsu, Y. Tozaki, K. Tokaji, and M. Nakamura: Strength Mater., 2008, vol. 40, pp. 138–41.

    Article  CAS  Google Scholar 

  4. D. Storjohann, O.M. Barabash, S.S. Babu, S.A. David, P.S. Sklad, and E.E. Bloom: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3237–47.

    Article  CAS  ADS  Google Scholar 

  5. P. Cavaliere, E. Cerri, L. Marzoli, and J. Dos Santos: Appl. Comp. Mater., 2004, vol. 11, pp 246–58.

    ADS  Google Scholar 

  6. P. Dong, F. Lu, J.K. Hong, and Z. Cao: Sci. Technol. Weld. Join., 2001, vol. 6, pp. 281–87.

    Article  CAS  ADS  Google Scholar 

  7. P. Ulysse: Mach. Tool. Manufact., 2002, vol. 42, pp. 1549–57.

    Article  Google Scholar 

  8. P.A. Colegrove and H.R. Shercliff: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 483–92.

    Article  Google Scholar 

  9. G. Buffa, J. Hua, R. Shivpuri, and L. Fratini: Mater. Sci. Eng. A, 2006, vol. 419, pp. 389–96.

    Article  Google Scholar 

  10. H. Schmidt and J. Hattel: Model. Simul. Mater. Sci. Eng., 2005, vol. 13, pp. 77–93.

    Article  ADS  Google Scholar 

  11. L. Fourment and S. Guerdoux: Int. J. Mater. Form Suppl., 2008, vol. 1, pp. 1287–90.

    Article  Google Scholar 

  12. Y.J. Chao, X. Qi, and W. Tang: Trans. ASME, 2003, vol. 125, pp 138–45.

    Google Scholar 

  13. X.K. Zhu and Y.J. Chao: J. Mater. Process. Technol., 2004, vol. 146, pp. 263–72.

    Article  CAS  Google Scholar 

  14. Z. Zhang: J. Mater. Sci., 2008, vol. 43, pp. 5867–77.

    Article  CAS  ADS  Google Scholar 

  15. M.Z.H. Khandkar, J.A. Khan, and A.P. Reynolds: Sci. Technol. Weld. Join., 2003, vol. 8, pp. 165–74.

    Article  Google Scholar 

  16. M.J Russell and H.R Shercliff: 1st Int. Symp. on Friction Stir Welding, Thousand Oaks, CA, 1999.

    Google Scholar 

  17. H. Schmidt, J. Hattel, and J. Wert: Model. Simul. Mater. Sci. Eng., 2004, vol. 12, pp. 143–57.

    Article  ADS  Google Scholar 

  18. H.B. Schmidt and J.H. Hattel: Scripta Mater., 2008, vol. 58, pp. 332–37.

    Article  CAS  Google Scholar 

  19. P. Vilaca, L. Quintino, and J.F. dos Santos: J. Mater. Process. Technol., 2005, vol. 169, pp. 452–65.

    Article  CAS  Google Scholar 

  20. P. Vilaca, L. Quintino, J.F. dos Santos, R. Zettler, and S. Sheikhi: Mater. Sci. Eng. A, 2007, vol. 445, pp. 501–08.

    Article  Google Scholar 

  21. S. Perivilli, J. Peddieson, and J. Cui: J. Heat Transfer, 2008, vol. 130, pp 1–9.

    Article  Google Scholar 

  22. B.M. Darras and M.K. Khraisheh: J. Mater. Eng. Perform., 2008, vol. 17, pp. 168–77.

    Article  CAS  Google Scholar 

  23. D. Rosenthal: Weld. J. Res. Supp., 1941, vol. 20, pp. 220–34.

    Google Scholar 

  24. D. Rosenthal and H. Shamerber: Weld. J. Res. Supp., 1938, vol. 17, pp. 2–8.

    Google Scholar 

  25. ∅. Grong: Metallurgical Modelling of Welding, 2nd ed., Materials Modelling Series, H.K.D.H Bhadeshia, ed., The Institute of Materials, London, 1997, pp. 24–90.

  26. http://www.sandmeyersteel.com/304L.html

  27. http://www.matweb.com

  28. Metals Handbook, vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 10th ed., ASM INTERNATIONAL, Metals Park, OH, 1990, pp. 774–76.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ferro.

Additional information

Manuscript submitted July 7, 2009.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11661-009-0170-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferro, P., Bonollo, F. A Semianalytical Thermal Model for Fiction Stir Welding. Metall Mater Trans A 41, 440–449 (2010). https://doi.org/10.1007/s11661-009-0104-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0104-y

Keywords

Navigation