Skip to main content
Log in

Microstructural Aspects of Adiabatic Shear Failure in Annealed Ti6Al4V

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work reports a comprehensive examination of the microstructural evolution in Ti6Al4V subjected to high-strain-rate deformation. The sequence of microstructural rearrangements leading to adiabatic shear banding is presented. A detailed microstructural comparison between two types of specimens, one that failed by adiabatic shear and the other that was strained to half its failure strain, is carried out. The main observation is that for this material, the microstructure of the two types of specimens is qualitatively identical, indicating that from approximately half the failure strain until adiabatic shear failure, no additional micromechanism is observed to develop and operate. Overall, the microstructure undergoes a significant refinement with the increasing strain until the formation of dynamically recrystallized grains. It is therefore suggested that the evolution of the volume fraction of recrystallized grains should be characterized from its early onset until final failure by adiabatic shear banding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. PIPS is a trademark of Gatan, Inc., Pleasanton, CA.

References

  1. Y. Bai and B. Dodd: Shear Localization: Occurrence, Theories, and Applications. Pergamon Press, Oxford, United Kingdom, 1992.

    Google Scholar 

  2. H. Tresca: Sur la fluidité et l’écoulement des corps solides, Annales du Conservatoire des Arts et Métiers, 1879, p. 4.

  3. C. Zener and J.H. Hollomon: J. Appl. Phys., 1944, vol. 15 (1), pp. 22–32.

    Article  ADS  Google Scholar 

  4. M.A. Meyers: Dynamic Behavior of Materials, J. Wiley & Sons, New York, NY, 1994.

    Book  MATH  Google Scholar 

  5. A. Molinari and R.J. Clifton: J. Appl. Mech., 1987, vol. 54 (4), pp. 806–12.

    Article  MATH  Google Scholar 

  6. Y. Xu, J. Zhang, Y.L. Bai, and M.A. Meyers: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 811–43.

    Article  CAS  ADS  Google Scholar 

  7. D. Rittel, Z.G. Wang, and M. Merzer: Phys. Rev. Lett., 2006, vol. 96, p. 075502.

    Article  CAS  PubMed  ADS  Google Scholar 

  8. J.A. Hines and K.S. Vecchio: Acta Mater., 1997, vol. 45 (2), pp. 635–49.

    Article  CAS  Google Scholar 

  9. M.T. Perez-Prado, J.A. Hines, and K.S. Vecchio: Acta Mater., 2001, vol. 49, pp. 2905–17.

    Article  CAS  Google Scholar 

  10. A.H. Chokshi and M.A. Meyers: Scripta Metall. Mater., 1990, vol. 24, pp. 606–10.

    Article  Google Scholar 

  11. M.A. Meyers, V.F. Nesterenko, J.C. LaSalvia, Y.B. Xu, and Q. Xue: J. Phys. IV France Colloq., 2000, vol. C3, part 9, pp. 51–56.

  12. Y. Me-Bar and D. Shechtman: Mater. Sci. Eng., 1983, vol. 58, pp. 181–88.

    Article  Google Scholar 

  13. C. Pizana, E.V. Esquivel, L.E. Murr, C.Y. Pina, M.T. Baquera, I.A. Anchondo, and L.S. Magness: J. Mater. Sci., 2005, vol. 40 (18), pp. 4849–57.

    Article  CAS  ADS  Google Scholar 

  14. E.A. Trillo, E.V. Esquivel, L.E. Murr, and L.S. Magness: Mater. Charact., 2002, vol. 48 (5), pp. 407–21.

    Article  CAS  Google Scholar 

  15. G.A. Li, L. Zhen, C. Lin, R.S. Gao, X. Tan, and C.Y. Xu: Mater. Sci. Eng., 2005, vol. 395 (1–2), pp. 98–101.

    Google Scholar 

  16. D.R. Chichili, K.T. Ramesh, and K.J. Hemker: Acta Mater., 1998, vol. 46 (3), pp. 1025–43.

    Article  CAS  Google Scholar 

  17. D. Rittel, P. Landau, and A. Venkert: Phys. Rev. Lett., 2008, vol. 101 (16), p. 165501.

    Article  CAS  PubMed  ADS  Google Scholar 

  18. D. Hughes and N. Hansen: Acta Mater., 1997, vol. 45 (9), pp. 3871–86.

    Article  CAS  Google Scholar 

  19. Q. Xue and G.T. Gray: Metall. Mater. Trans. A, 2006, vol. 37A (8), pp. 2435–46.

    Article  CAS  Google Scholar 

  20. Q. Xue and G.T. Gray: Metall. Mater. Trans. A, 2006, vol. 37A (8), pp. 2447–58.

    Article  CAS  Google Scholar 

  21. U. Andrade, M.A. Meyers, K.S. Vecchio, and A.H. Chokshi: Acta Metall. Mater., 1994, vol. 42 (9), pp. 3183–95.

    Article  CAS  Google Scholar 

  22. Q. Xue, E.K. Cerreta, and G.T. Gray: Acta Mater. 2007, vol. 55, pp. 691–704.

    Article  CAS  Google Scholar 

  23. D. Rittel and Z.G. Wang: Mech. Mater., 2008, vol. 40, pp. 629–35.

    Article  Google Scholar 

  24. S.P. Timothy and I.M. Hutchings: Mater. Sci. Technol., 1985, vol. 1 (7), pp. 526–30.

    CAS  Google Scholar 

  25. S.P. Timothy and I.M. Hutchings: Acta Metall. 1985, vol. 33 (4), pp. 667–76.

    Article  CAS  Google Scholar 

  26. Q. Xue, M.A. Meyers, and V.F. Nesterenko: Acta Mater., 2002, vol. 50 (3), pp. 575–96.

    Article  CAS  Google Scholar 

  27. W.S. Lee and C.F. Lin: J. Mater. Process. Technol., 1998, vol. 75, pp. 127–36.

    Article  Google Scholar 

  28. M.A. Meyers and H.R. Pak: Acta Metall., 1986, vol. 34 (12), pp. 2493–99.

    Article  CAS  Google Scholar 

  29. D.R. Chichili, K.T. Ramesh, and K.J. Hemker: J. Mech. Phys. Solids, 2004, vol. 52 (8), pp. 1889–1909.

    Article  MATH  CAS  Google Scholar 

  30. A. Dorogoy and D. Rittel: Exp. Mech., 2005, vol. 45 (2), pp. 167–77.

    Article  Google Scholar 

  31. A. Dorogoy and D. Rittel: Exp. Mech., 2005, vol. 45 (2), pp. 178–85.

    Article  Google Scholar 

  32. D. Rittel, S. Lee, and G. Ravichandran: Exp. Mech., 2002, vol. 42 (1), pp. 58–64.

    Article  CAS  Google Scholar 

  33. H. Kolsky: Proc. Phys. Soc. London, 1949, vol. 62B, pp. 676–700.

    CAS  ADS  Google Scholar 

  34. T. Leguey, R. Schaublin, P. Marmy, and M. Victoria: J. Nucl. Mater., 2002, vol. 305, pp. 52–59.

    Article  CAS  ADS  Google Scholar 

  35. S.A. Atroshenko: Mater. Sci. Eng., A, 2004, vol. 378, pp. 293–98.

    Article  Google Scholar 

  36. L.S. Toth, A. Hildenbrand, and A. Molinari: J. de Phys. IV France, 2000, vol. 10, part 9, pp. 365–70.

  37. S. Medyanik, W. Liu, and S. Li.: J. Mech. Phys. Solids, 2007. vol. 55 (7), pp. 1439–61.

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  38. S. Mercier, A. Molinari, and Y. Estrin: J. Mater. Sci., 2007, vol. 42, pp. 1455–65.

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Venkert.

Additional information

Manuscript submitted June 21, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landau, P., Venkert, A. & Rittel, D. Microstructural Aspects of Adiabatic Shear Failure in Annealed Ti6Al4V. Metall Mater Trans A 41, 389–396 (2010). https://doi.org/10.1007/s11661-009-0098-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0098-5

Keywords

Navigation