Skip to main content
Log in

Development of adiabatic shear bands in annealed 316L stainless steel: Part II. TEM studies of the evolution of microstructure during deformation localization

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evolution of adiabatic shear localization in an annealed AISI 316L stainless steel has been investigated and was reported in Part I of this paper (Met. Trans. A, 2006, Vol. 37A, pp. 2435–446). In the present research (Part II), a comprehensive transmission electron microscopy (TEM) examination was conducted on the microstructural evolution of shear localization in this material at different loading stages. The TEM results indicate that elongated subgrain laths and an avalanche of dislocation cells are the major characteristics in an initiated band. Development of the substructures within shear bands is controlled by dynamic recovery and continuous dynamic recrystallization. The core of shear bands was found to consist of fine equiaxed subgrains. Well-developed shear bands are filled with a mixture of equiaxed, rectangular, and elongated subgrains. The equiaxed subgrains, with a typical size less than 100 nm, are postulated to result from either the breakdown and splitting of subgrain laths or the reconstruction of subcells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.C. Rogers:Ann. Rev. Mater. Sci., 1979, vol. 9, pp. 283–311.

    Article  CAS  Google Scholar 

  2. Y.L. Bai and B. Dodd:Adiabatic Shear Localization, Occurrence, Theories and Applications, Pergamon Press, Oxford, UK, 1992, p. 24.

    Google Scholar 

  3. M.E. Backman and S.A. Finnegan: inMetallurgical Effects at High Strain Rates, R.W. Rohde, B.M. Butcher, J.R. Holland, and C.H. Karnes, eds., Plenum Press, New York, NY, 1973, pp. 531–43.

    Google Scholar 

  4. R.F. Recht:ASME(E) J. Appl. Mech. Trans., 1964, vol. 31, pp. 189–93.

    Google Scholar 

  5. R.J. Clifton: inMaterial Response to Ultra-High Loading Rates, NMAB-356, National Advisory Board (NRC), Washington, DC, 1980, Chapter 8.

    Google Scholar 

  6. T.W. Wright and J.W. Walter:J. Mech. Phys. Solids, 1987, vol. 35, pp. 701–20.

    Article  Google Scholar 

  7. J.S. Costin, E.E. Crisman, R.H. Hawley, and J. Duffy: inProceedings of the Second Conference on the Mechanical Properties of Materials at High Rates of Strain, Inst. Phys. Conf. Ser. No. 47, Oxford, 1979, pp. 90–100.

  8. K.A. Hartley, J. Duffy, and R.H. Hawley:J. Mech. Phys. Solids, 1987, vol. 35, pp. 283–301.

    Article  Google Scholar 

  9. A. Marchand and J. Duffy:J. Mech. Phys. Solids, 1988, vol. 36, pp. 251–83.

    Article  Google Scholar 

  10. Y.L. Bai, Q. Xue, Y.B. Xu, and L.T. Shen:Mech. Mater., 1994, vol. 17, pp. 155–64.

    Article  Google Scholar 

  11. M. Zhou, A.J. Rosakis, and G. Ravichandran:J. Mech. Phys. Solids, 1996, vol. 44, pp. 981–1006.

    Article  CAS  Google Scholar 

  12. J.J. Mason, A.J. Rosakis, and G. Ravichandran:J. Mech. Phys. Solids, 1994, vol. 42, pp. 1679–97.

    Article  CAS  Google Scholar 

  13. H.C. Rogers and C.V. Shastry: inShock Waves and High Strain Rate Phenomena in Metals, M.A. Meyers and L.E. Murr, eds., Plenum Press, New York, NY, 1981, pp. 285–98.

    Google Scholar 

  14. R.E. Winter:Philos. Mag., 1975, vol. 31, pp. 765–73.

    CAS  Google Scholar 

  15. M.A. Meyers, G. Subhash, B.K. Kad, and L. Prasad:Mech. Mater., 1994, vol. 17, pp. 175–93.

    Article  Google Scholar 

  16. M.A. Meyers, Y.B. Xu, Q. Xue, M.T. Perez-Prado, and T.R. McNelley:Acta Mater., 2003, vol. 51, pp. 1307–25.

    Article  CAS  Google Scholar 

  17. J.V. Craig and T.A.C. Stock:J Aust. Inst. Metals, 1970, vol. 15, pp. 1–5.

    Google Scholar 

  18. T.A.C. Stock and K.R.L. Thompson:Metall. Trans., 1970, vol. 1, pp. 219–24.

    Google Scholar 

  19. A.L. Wingrove:J Aust. Inst. Metals, 1971, vol. 16, pp. 67–70.

    CAS  Google Scholar 

  20. R.C. Glenn and W.C. Leslie:Metall. Trans., 1971, vol. 2, pp. 2945–47.

    CAS  Google Scholar 

  21. K. Cho, S. Lee, S.R. Nutt, and J. Duffy:Acta Metall. Mater., 1993, vol. 41, pp. 923–32.

    Article  CAS  Google Scholar 

  22. Y.B. Xu, Y.L. Bai, Q. Xue, and L.T. Shen:Acta Mater., 1996, vol. 44, pp. 1917–26.

    Article  CAS  Google Scholar 

  23. Y. Me-Bar and D. Shechtman:Mater. Sci. Eng., 1983, vol. 58, pp. 181–88.

    Article  Google Scholar 

  24. H.A. Grebe, H.-R. Pak, and M.A. Meyers:Metall. Trans., 1985, vol. 16A, pp. 761–75.

    CAS  Google Scholar 

  25. M.A. Meyers and H.-R. Pak:Acta Metall., 1986, vol. 34, pp. 2493–99.

    Google Scholar 

  26. K.H. Hartman, H.D. Kunze, and L.W. Meyer: inShock Waves and High-Strain-Rate Phenomena in Metals, M.A. Meyers and L.E. Murr, eds., Plenum Press, New York, NY, 1981, pp. 325–37.

    Google Scholar 

  27. C. Zener and J.H. Hollomon:J. Appl. Mech., 1944, vol. 15, pp. 22–32.

    Google Scholar 

  28. M.C. Mataya, M.J. Carr, and G. Krauss:Metall. Trans., 1982, vol. 13A, pp. 1263–74.

    Google Scholar 

  29. U. Andrade, M.A. Meyers, K.S. Vecchio, and A.H. Chokshi:Acta Metall. Mater., 1994, vol. 42, pp. 3183–95.

    Article  CAS  Google Scholar 

  30. M.A. Meyers, L.W. Meyer, J. Beatty, U. Andrade, K.S. Vecchio, and A.H. Chokshi: inShock Waves and High-Strain-Rate Phenomena in Materials, M.A. Meyers, L.E. Murr, and K.P. Staudhammer, eds., Marcel Dekker, Inc., New York, NY, 1992, p. 529.

    Google Scholar 

  31. J.H. Beatty, L.W. Meyer, M.A. Meyers, and S. Nemat-Nasser: inShock Waves and High-Strain-Rate Phenomena in Materials, M.A. Meyers, L.E. Murr, and K.P. Staudhammer, eds., Marcel Dekker, Inc., New York, NY, 1992, p. 645.

    Google Scholar 

  32. C.O. Mgbokwere, S.R. Nutt, and J. Duffy:Mech. Mater., 1994, vol. 17, pp. 97–110.

    Article  Google Scholar 

  33. K.A. Hartley, J. Duffy, and R.H. Hawley:J. Mech. Phys. Solids, 1987, vol. 35, pp. 283–301.

    Article  Google Scholar 

  34. A. Marchand and J. Duffy:J. Mech. Phys. Solids, 1988, vol. 36, pp. 251–83.

    Article  Google Scholar 

  35. J. Duffy and Y.C. Chi:Mater. Sci. Eng., 1992, vol. A157, pp. 195–210.

    CAS  Google Scholar 

  36. A. Marchand, K. Cho, and J. Duffy:The Formation of Adiabatic Shear Bands in an A1S1 1018 Cold-Rolled Steel, Brown University Technical Report, October 1988.

  37. M.A. Meyers, D.J. Benson, O. Vöhringer, B.K. Kad, Q. Xue, and H.-H. Fu:Mater. Sci. Eng., 2002, vol. A322, pp. 194–216.

    CAS  Google Scholar 

  38. B. Derby:Acta Metall., 1991, vol. 39, pp. 955–62.

    Article  CAS  Google Scholar 

  39. J. Wang, Z. Horita, M. Furukawa, M. Nemoto, N. Tsenev, R. Valiev, Y. Ma, and T.G. Langdon:J. Mater. Res., 1993, vol. 8, pp. 2810–18.

    CAS  Google Scholar 

  40. F.J. Humphreys and M. Hatherly:Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, U.K., 2002, pp. 127–72

    Google Scholar 

  41. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov:Prog. Mater. Sci., 2000, vol. 45, pp. 103–89.

    Article  CAS  Google Scholar 

  42. Y.T. Zhu and T.C. Lowe:Mater. Sci. Eng., 2000, vol. A291, pp. 46–53.

    CAS  Google Scholar 

  43. Y.T. Zhu, J.Y. Huang, J. Gubicza, T. Ungár, Y.M. Wang, E. Ma, and R.Z. Valiev:J. Mater. Res., 2003, vol. 18, pp. 1908–17.

    CAS  Google Scholar 

  44. Q. Wei, D. Jia, K.T. Ramesh, and E. Ma:Appl. Phys. Lett., 2002, vol. 81, pp. 1240–42.

    Article  CAS  Google Scholar 

  45. D. Jia, K.T. Ramesh, and E. Ma:Acta Mater., 2003, vol. 51, pp. 3495–509.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, Q., Gray, G.T. Development of adiabatic shear bands in annealed 316L stainless steel: Part II. TEM studies of the evolution of microstructure during deformation localization. Metall Mater Trans A 37, 2447–2458 (2006). https://doi.org/10.1007/BF02586218

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02586218

Keywords

Navigation