Skip to main content
Log in

Thermal and Irradiation Creep Behavior of a Titanium Aluminide in Advanced Nuclear Plant Environments

  • Symposium: Materials for the Nuclear Renaissance
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Titanium aluminides are well-accepted elevated temperature materials. In conventional applications, their poor oxidation resistance limits the maximum operating temperature. Advanced reactors operate in nonoxidizing environments. This could enlarge the applicability of these materials to higher temperatures. The behavior of a cast gamma-alpha-2 TiAl was investigated under thermal and irradiation conditions. Irradiation creep was studied in beam using helium implantation. Dog-bone samples of dimensions 10 × 2 × 0.2 mm3 were investigated in a temperature range of 300 °C to 500 °C under irradiation, and significant creep strains were detected. At temperatures above 500 °C, thermal creep becomes the predominant mechanism. Thermal creep was investigated at temperatures up to 900 °C without irradiation with samples of the same geometry. The results are compared with other materials considered for advanced fission applications. These are a ferritic oxide-dispersion-strengthened material (PM2000) and the nickel-base superalloy IN617. A better thermal creep behavior than IN617 was found in the entire temperature range. Up to 900 °C, the expected 104 hour stress rupture properties exceeded even those of the ODS alloy. The irradiation creep performance of the titanium aluminide was comparable with the ODS steels. For IN617, no irradiation creep experiments were performed due to the expected low irradiation resistance (swelling, helium embrittlement) of nickel-base alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Lapin and M. Nazmy: Mater. Sci. Eng. A, 2004, vol. 380, pp. 298–307.

    Article  Google Scholar 

  2. E.A. Loria: Intermetallics, 2000, vol. 8, pp. 1339–45.

    Article  CAS  Google Scholar 

  3. T. Tetsui: Mater. Sci. Eng. A, 2002, vols. 329–331, pp. 582–88.

    Google Scholar 

  4. A Technology Roadmap for Generation IV Nuclear Systems, U.S. Department of Energy, 2002, http://gif.inel.gov/roadmap/pdfs/gen_iv_roadmap.pdf.

  5. M. Es-Souni, A. Bartels, and R. Wagner: Acta Metall. Mater., 1995, vol. 43 (1), pp. 153–61.

    CAS  Google Scholar 

  6. M.A. Morris and T. Lipe: Intermetallics, 1997, vol. 5, pp. 329–37.

    Article  MATH  CAS  Google Scholar 

  7. T.A. Parthasarathy, M.G. Mendiratta, and D.M. Dimiduk: Scripta Mater., 1997, vol. 37 (3), pp. 315–21.

    Article  CAS  Google Scholar 

  8. J.G. Wang, L.M. Hsiung, and T.G. Nieh: Intermetallics, 1999, vol. 7, pp. 757–63.

    Article  Google Scholar 

  9. L.M. Hsiung and T.G. Nieh: Intermetallics, 1999, vol. 7, pp. 821–27.

    Article  CAS  Google Scholar 

  10. C.E. Wen, K. Yasue, J.G. Lin, Y.G. Zhang, and C.Q. Chen: Intermetallics, 2000, vol. 8, pp. 525–29.

    Article  CAS  Google Scholar 

  11. M. Nazmy and M. Staubli: U.S. Patent 5,207,982 and EP. 45505 B1.

  12. W.M. Yin, V. Lupinc, and L. Battezzati: Mater. Sci. Eng. A, 1997, vols. 239–240, pp. 713–21.

    Google Scholar 

  13. J.P. Biersack and L.G. Haggmark: Nucl. Instr. Meth., 1980, vol. 174, p. 93.

    Article  Google Scholar 

  14. J.F. Ziegler, J.P. Biersack, and U. Littmark: The Stopping and Range of Ions in Solids, Pergamon, New York, NY, 1985.

    Google Scholar 

  15. P. Jung, A. Schwartz, and H.K. Sahu: Nucl. Instr. Meth. A, 1985, vol. 234, pp. 331–34.

    Article  ADS  Google Scholar 

  16. W. Hoffelner, M. Staubli, A. Czeratzki, and R.B. Scarlin: Residual Life Assessments of Steam Turbine Components with the “Isostress”-Method, ABB Metals Laboratories, Baden, Switzerland, unpublished research, 1982–1984.

  17. W.M. Yin, V. Lupinc, and L. Battezzati: Mater. Sci. Eng. A, 1997, vol. 239–240, pp. 713–21.

    Google Scholar 

  18. R.J. Puigh: in Effects of Radiation in Materials, F.A. Garner and J.F. Perrin, eds., ASTM STP 870, ASTM, Philadelpia, PA, 1985, pp. 7–18.

  19. J. Chen, M.A. Pouchon, A. Kimura, P. Jung, and W. Hoffelner: J. Nucl. Mater., 2009, vols. 386–388, pp. 143–46.

    Article  Google Scholar 

  20. P. Yvon and F. Carré: J. Nucl. Mater., 2009, vol. 385, pp. 217–22.

    Article  CAS  ADS  Google Scholar 

  21. F. Schubert, U. Bruch, R. Cook, H. Diehl, Ph.J. Ennis, W. Jakobeit, H.J. Penkalla, E. te Heesen, and G. Ullrich: Nucl. Technol., 1984, vol. 66, pp. 227–40.

    CAS  Google Scholar 

  22. H.-J. Penkalla, H.-H. Over, and F. Schubert: Nucl. Technol., 1984, vol. 66, pp. 685–92.

    Google Scholar 

  23. S. Chandra, R. Cotgrove, S.R. Holdsworth, M. Schwienheer, and M.W. Spindler: Creep Rupture Data Assessments of Alloy 617, Creep and Fracture in High Temperature Components, ECCC Creep Conf., London, Sept. 2005, pp. 178–88.

  24. J.F. dos Reis Sobrinho and L. Oliveira Bueno: Rev. Matéria, 2005, vol. 10 (3), pp. 463–71.

    Google Scholar 

  25. W. Hoffelner: in High Temperature Alloys for Gas Turbines and other Applications, W. Betz, R. Brunetaud, D. Coutsouradis, H. Fischmeister, T.B. Gibbons, I. Kvernes, Y. Lindblom, J.B. Marriott, and D.B. Meadowcroft, eds., D. Reidel Publishing Company, Dordrecht, 1986, pp. 413–40.

    Google Scholar 

  26. W. Hoffelner and M. Staubli: ABB Metals Laboratories, Baden, Switzerland, unpublished research, 1985.

  27. J. Chen and W. Hoffelner: J. Nucl. Mater., 2009, vol. 392 (2), pp. 360–63.

    Article  CAS  ADS  Google Scholar 

  28. A.I. Ryazanov: “Modern Problems of Irradiation-Induced Plastic Deformation in Irradiated Structural Materials,” Poster presented at Dislocations 2004, La Colle-sur-Loup, France, Sept. 13–17, 2004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Hoffelner.

Additional information

This article is based on a presentation given in the symposium “Materials for the Nuclear Renaissance,” which occurred during the TMS Annual Meeting, February 15–19, 2009, in San Francisco, CA, under the auspices of Corrosion and Environmental Effects and the Nuclear Materials Committees of ASM-TMS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnusson, P., Chen, J. & Hoffelner, W. Thermal and Irradiation Creep Behavior of a Titanium Aluminide in Advanced Nuclear Plant Environments. Metall Mater Trans A 40, 2837–2842 (2009). https://doi.org/10.1007/s11661-009-0047-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0047-3

Keywords

Navigation