Skip to main content
Log in

Cosintering of Powder Injection Molding Parts Made from Ultrafine WC-Co and 316L Stainless Steel Powders for Fabrication of Novel Composite Structures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Sintering response and phase formation during sintering of WC-Co/316L stainless steel composites produced by assembling of powder injection molding (PIM) parts were studied. It is shown that during cosintering a significant mismatch strain (>4 pct) is developed in the temperature range of 1080 °C to 1350 °C. This mismatch strain induces biaxial stresses at the interface, leading to interface delamination. Experimental results revealed that sintering at a heating rate of 20 K/min could be used to decrease the mismatch strain to <2 pct. Meanwhile, WC is decomposed at the contact area and the diffusion of C and Co into the iron lattice results in the formation of a liquid and MC and M6C carbides at 1220 °C. Spreading of the liquid accelerates the reaction, affecting the dimensional stability of the PIM parts. To prevent the reaction, surface oxidation of the cemented carbide followed by hydrogen reduction during sintering was examined. Although the amount of mismatch strain increased, formation of a metallic interface consisting of a W-Co alloy (45 to 50 at. pct Co) and a Co-rich iron alloy (18 at. pct Co) prevented the decomposition of WC and melt formation. It is also shown that the deposition of a thin Ni layer after thermal debinding decreases the mismatch stresses through melt formation, although interlayer diffusion causes pore-band formation close to the steel part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K.J.A. Brookes: World Directory and Handbook of Hardmetals, 4th ed., International Carbide Data, Hertfordshire, UK, 1987, pp. 47–59.

    Google Scholar 

  2. A. Parasiris, K.T. Hartwig, and M.N. Srinivasan: Scripta Mater., 2000, vol. 42, pp. 875–80.

    Article  CAS  Google Scholar 

  3. X. Wang, Z.Z. Fang, and H.Y. Sohn: Int. J. Refract. Met. Hard Mater., 2008, vol. 26, pp. 232–42.

    Article  CAS  Google Scholar 

  4. Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang, and H.Y. Sohn: Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 288–99.

    Article  CAS  Google Scholar 

  5. Z.Z. Fang, P. Maheshwari, X. Wang, H.Y. Sohn, A. Griffo, and R. Riley: Int. J. Refract. Met. Hard Mater., 2005, vol. 23, pp. 249–57.

    Article  CAS  Google Scholar 

  6. P. Maheshwari, Z.G.Z. Fang, and H.Y. Sohn: Int. J. Powder Metall., 2007, vol. 43, pp. 41–47.

    CAS  Google Scholar 

  7. G.R. Goren-Muginstein, S. Berger, and A. Rosen: Nanostruct. Mater., 1998, vol. 101, pp. 795–804.

    Article  Google Scholar 

  8. R. Porat, S. Berger, and A. Rosen: Nanostruct. Mater., 1996, vol. 7, pp. 429–36.

    Article  CAS  Google Scholar 

  9. Z. Baojun, Q. Xuanhui, and T. Ying: Int. J. Refract. Met. Hard Mater., 2002, vol. 20, pp. 389–94.

    Article  Google Scholar 

  10. A. Ruh, A.-M. Dieckmann, R. Heldele, V. Piotter, R. Ruprecht, C. Munzinger, J. Fleischer, and J. Haußelt: Microsyst. Technol., 2008, vol. 14, pp. 1805–11.

    Article  CAS  Google Scholar 

  11. J.R. Alcock, S.M. Hanson, and D.J. Stephenson: Surf. Coat. Technol., 1998, vol. 105, pp. 65–71.

    Article  CAS  Google Scholar 

  12. J.R. Alcock: Met. Powder Rep., 1999, vol. 54 (6), pp. 30–34.

    Article  Google Scholar 

  13. L.-K. Tan, R. Baumgartner, and R. German: Advances in Powder Metallurgy and Particular Materials, MPIF, New York, NY, 2001, vol. 4, pp. 191–98.

    Google Scholar 

  14. P. Imgrund, A. Rota, and A. Simchi: J. Mater. Process. Technol., 2008, vol. 200, pp. 259–64.

    Article  CAS  Google Scholar 

  15. F. Imgrund, A. Rota, F. Petzoldt, and A. Simchi: Int. J. Adv. Manufac. Technol., 2007, vol. 33, pp. 176–86.

    Article  Google Scholar 

  16. A. Simchi, A. Rota, and P. Imgrund: Mater. Sci. Eng. A, 2006, vol. 424, pp. 282–89.

    Article  Google Scholar 

  17. A. Simchi: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2549–57.

    Article  CAS  Google Scholar 

  18. M. Dourandish, A. Simchi, E. Tamjid Shabestary, and T. Hartwig: J. Am. Ceram. Soc., 2008, vol. 91, pp. 3493–503.

    Article  CAS  Google Scholar 

  19. V. Firouzdor, A. Simchi, and A.H. Kokabi: J. Mater. Sci., 2008, vol. 43, pp. 55–63.

    Article  CAS  ADS  Google Scholar 

  20. M. Dourandish, D. Godlinski, A. Simchi, and V. Firouzdor: Mater. Sci. Eng. A, 2008, vol. 472, pp. 338–46.

    Article  Google Scholar 

  21. B.D. Cullity: Elements of X-Ray Diffraction, 2nd ed., Addison-Wesley Publishing Company Inc., Reading, MA, 1978, pp. 281–84.

    Google Scholar 

  22. J.M. Missiaen: Mater. Sci. Eng. A, 2008, vol. 475, pp. 2–11.

    Article  Google Scholar 

  23. J.M. Missiaen and S. Roure: Acta Mater., 1998, vol. 46, pp. 3985–93.

    Article  CAS  Google Scholar 

  24. G. Gille: Int. J. Refract. Met. Hard Mater., 2002, vol. 20, pp. 3–22.

    Article  CAS  Google Scholar 

  25. A. Petersson: Int. J. Refract. Met. Hard Mater., 2004, vol. 22, pp. 211–17.

    Article  CAS  Google Scholar 

  26. D. Ravi and D.J. Green: J. Eur. Ceram. Soc., 2006, vol. 26, pp. 17–25.

    Article  CAS  Google Scholar 

  27. J.-W. Park and T.W. Eagar: Scripta Mater., 2004, vol. 50, pp. 555–59.

    Article  CAS  Google Scholar 

  28. M.Y. Chu, M.N. Rahaman, L.C. De Jonghe, and R.J. Brook: J. Am. Ceram. Soc., 2005, vol. 74, pp. 1217–25.

    Article  Google Scholar 

  29. D. Liu, L. Li, and F. Li, and Y. Chen: Surf. Coat. Technol., 2008, vol. 202, pp. 1771–77.

    Article  CAS  Google Scholar 

  30. B. Uhrenius, H. Pastor, and E. Pauty: Int. J. Refract. Met. Hard Mater., 1997, vol. 15, pp. 139–49.

    Article  CAS  Google Scholar 

  31. T.E. Babutina, I.V. Uvarova, L.D. Konchakovskaya, and L. Kuz’menko: Powder Metall. Met. Ceram., 2004, vol. 43, pp. 111–16.

    Article  CAS  Google Scholar 

  32. D.S. Venables and M.E. Brown: Thermochim. Acta, 1996, vol. 285, pp. 361–82.

    Article  CAS  Google Scholar 

  33. J.W. Park, P.F. Mendez, and T.W. Eagar: Scripta Mater., 2005, vol. 53, pp. 857–61.

    Article  CAS  Google Scholar 

  34. H. Pastor and E. Pauty: Int. J. Refract. Met. Hard Mater., 1997, vol. 15, pp. 139–49.

    Article  Google Scholar 

  35. G. Gille, J. Bredthauer, B. Gries, B. Mende, and W. Heinrich: Int. J. Refract. Met. Hard Mater., 2000, vol. 18, pp. 87–102.

    Article  CAS  Google Scholar 

  36. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, Van Nostrand Reinhold Co. Ltd., Berkshire, United Kingdom, 1983, p. 89.

    Google Scholar 

Download references

Acknowledgments

The authors thank their colleagues, Dr. Thomas Hartwig and Dr. Georg Veltl (Fraunhofer IFAM, Bremen, Germany), for contributing to this work via several useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Simchi.

Additional information

Manuscript submitted November 4, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simchi, A., Petzoldt, F. Cosintering of Powder Injection Molding Parts Made from Ultrafine WC-Co and 316L Stainless Steel Powders for Fabrication of Novel Composite Structures. Metall Mater Trans A 41, 233–241 (2010). https://doi.org/10.1007/s11661-009-0045-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0045-5

Keywords

Navigation