Skip to main content
Log in

Grain Cluster Microstructure and Grain Boundary Character Distribution in Alloy 690

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of thermal-mechanical processing (TMP) on microstructure evolution during recrystallization and grain boundary character distribution (GBCD) in aged Alloy 690 were investigated by the electron backscatter diffraction (EBSD) technique and optical microscopy. The original grain boundaries of the deformed microstructure did not play an important role in the manipulation of the proportion of the Σ3n (n = 1, 2, 3…) type boundaries. Instead, the grain cluster formed by multiple twinning starting from a single nucleus during recrystallization was the key microstructural feature affecting the GBCD. All of the grains in this kind of cluster had Σ3n mutual misorientations regardless of whether they were adjacent. A large grain cluster containing 91 grains was found in the sample after a small-strain (5 pct) and a high-temperature (1100 °C) recrystallization anneal, and twin relationships up to the ninth generation (Σ39) were found in this cluster. The ratio of cluster size over grain size (including all types of boundaries as defining individual grains) dictated the proportion of Σ3n boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. OIM is a trademark of EDAX; TSL and EDAX are a part of AMETEK, Inc., Materials Analysis Division, Mahwah, NJ.

References

  1. D.R. Diercks, W.J. Shack, and J. Muscar: Nucl. Eng. Des., 1999, vol. 194, pp. 19–30.

    Article  CAS  Google Scholar 

  2. M. Thuvander and K. Stiller: Mater. Sci. Eng., A, 2000, vol. 281, pp. 96–103.

    Article  Google Scholar 

  3. S. Qiu, X. Su, and Y. Wen: Nucl. Power Eng., 1995, vol. 16, pp. 336–40.

    CAS  Google Scholar 

  4. M. Kumar and C.A. Schuh: Scripta Mater., 2006, vol. 54, pp. 91–92.

    Google Scholar 

  5. V. Randle: Acta Mater., 2004, vol. 52, pp. 4067–81.

    Article  CAS  Google Scholar 

  6. T. Watanabe: Res. Mech., 1984, vol. 11, pp. 47–84.

    CAS  Google Scholar 

  7. M.L. Kronberg and F.H. Wilson: Trans. AIME, 1949, vol. 185, pp. 501–14.

    Google Scholar 

  8. W. Bollmann: Crystal Defects and Crystal Interfaces, Springer, Berlin, 1970, pp. 1–254.

    Google Scholar 

  9. P. Lin, G. Palumbo, and U. Erb: Scripta Metall. Mater., 1995, vol.33, pp. 1387–92.

    Article  CAS  Google Scholar 

  10. E.M. Lehockey, D. Limoges, G. Palumbo, J. Sklarchuk, K. Tomantschger, and A. Vincze: J. Power Sources, 1999, vol. 78, pp. 79–83.

    Article  CAS  Google Scholar 

  11. V. Thaveeprungsriporn and G.S. Was: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2101–12.

    Article  CAS  Google Scholar 

  12. M. Kumar, A.J. Schwartz, and W.E. King: Acta Mater., 2002, vol. 50, pp. 2599–12.

    Article  CAS  Google Scholar 

  13. S.L. Lee and N.L. Richards: Mater. Sci. Eng., A, 2005, vol. 390, pp. 81–87.

    Article  CAS  Google Scholar 

  14. M. Shimada, H. Kokawa, and Z.J. Wang: Acta Mater., 2002, vol. 50, pp. 2331–41.

    Article  CAS  Google Scholar 

  15. C.B. Thomson and V. Randle: Acta Mater., 1997, vol. 45, pp. 4909–16.

    Article  CAS  Google Scholar 

  16. V. Randle: Acta Mater., 1999, vol. 47, pp. 4187–96.

    Article  CAS  Google Scholar 

  17. W.G. Wang and H. Guo: Mater. Sci. Eng., A, 2007, vols. 445–446, pp. 155–62.

    Google Scholar 

  18. S. Xia, B.X. Zhou, W.J. Chen, and W.G. Wang: Scripta Mater., 2006, vol. 54, pp. 2019–22.

    Article  CAS  Google Scholar 

  19. S. Xia, B.X. Zhou, and W.J. Chen: J. Mater. Sci., 2008, vol. 43, pp. 2990–3000.

    Article  ADS  CAS  Google Scholar 

  20. B.W. Reed, M. Kumar, R.W. Minich, and R.E. Rudd: Acta Mater., 2008, vol. 56, pp. 3278–89.

    Article  CAS  Google Scholar 

  21. B.W. Reed and M. Kumar: Scripta Mater., 2006, vol. 54, pp. 1029–33.

    Article  CAS  Google Scholar 

  22. G. Gottstein: Acta Metall., 1984, vol. 32, pp. 1117–38.

    Article  CAS  Google Scholar 

  23. V. Randle: J. Mater. Sci., 2006, vol. 41, pp. 653–60.

    Article  ADS  CAS  Google Scholar 

  24. J.J. Kai, G.P. Yu, C.H. Tsai, M.N. Liu, and S.C. Yao: Metall. Trans. A, 1989, vol. 20A, pp. 2057–67.

    ADS  CAS  Google Scholar 

  25. H. Li, S. Xia, B.X. Zhou, J.S. Ni, and W.J. Chen: Acta Metall. Sinica, 2009, vol. 45, pp. 195–98.

    Google Scholar 

  26. G. Palumbo and K.T. Aust: Acta. Metall. Mater., 1990, vol. 38, pp. 2343–52.

    Article  CAS  Google Scholar 

  27. D.G. Brandon, B. Ralph, S. Ranganathan, and M.S. Wald: Acta Metall., 1964, vol. 12, pp. 813–18.

    Article  Google Scholar 

  28. http://www.edax.com/.

  29. F.J. Humphreys: J. Mater. Sci., 2001, vol. 36, pp. 3833–54.

    Article  CAS  Google Scholar 

  30. A. Berger, P.J. Wilbrandt, F. Ernst, U. Klement, and P. Haasen: Prog. Mater. Sci., 1988, vol. 32, pp. 1–95.

    Article  CAS  Google Scholar 

  31. P. Haasen: Metall. Trans. B, 1993, vol. 24B, pp. 225–39.

    Article  ADS  CAS  Google Scholar 

  32. P.J. Wilbrandt: Phys. Status Solidi, 1980, vol. 61, pp. 411–18.

    Article  CAS  Google Scholar 

  33. C.V. Kopezky, A.V. Andreeva, and G.D. Sukhomlin: Acta Metall. Mater., 1991, vol. 39, pp. 1603–15.

    Article  Google Scholar 

  34. H. Paul, J.H. Driver, C. Maurice, and A. Piatkowski: Acta Mater., 2007, vol. 55, pp. 833–47.

    Article  CAS  Google Scholar 

  35. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, United Kingdom, 2004, pp. 215–67.

    Google Scholar 

  36. D.P. Field, L.T. Bradford, M.M. Nowell, and T.M. Lillo: Acta Mater., 2007, vol. 55, pp. 4233–41.

    Article  CAS  Google Scholar 

  37. V.Y. Gertsman and C.H. Henager: Interface Sci., 2003, vol. 11, pp. 403–15.

    Article  CAS  Google Scholar 

  38. S. Mahajan, C.S. Pande, M.A. Imam, and B.B. Rath: Acta Mater., 1997, vol. 45, pp. 2633–38.

    Article  CAS  Google Scholar 

  39. G. Palumbo, K.T. Aust, U. Erb, P.J. King, A.M. Brennenstuhl, and P.C. Lichtenberger: Phys. Status Solidi, 1992, vol. 131, pp. 425–28.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Major State Basic Research Development Program of China (Grant No. 2006CB605001), the Innovation Foundation of Shanghai University (Grant No. A10-0110-08-004), and the Shanghai Leading Academic Discipline Project (Grant No. S30107). The authors are grateful to Dr. Qin Bai for assistance during the sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Xia.

Additional information

Manuscript submitted December 2, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, S., Zhou, B. & Chen, W. Grain Cluster Microstructure and Grain Boundary Character Distribution in Alloy 690. Metall Mater Trans A 40, 3016–3030 (2009). https://doi.org/10.1007/s11661-009-0035-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0035-7

Keywords

Navigation