Skip to main content
Log in

Two-Phase Modeling of Hot Tearing in Aluminum Alloys: Applications of a Semicoupled Method

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hot tearing formation in both a classical tensile test and during direct chill (DC) casting of aluminum alloys has been modeled using a semicoupled, two-phase approach. Following a thermal calculation, the deformation of the mushy solid is computed using a compressive rheological model that neglects the pressure of the intergranular liquid. The nonzero expansion/compression of the solid and the solidification shrinkage are then introduced as source terms for the calculation of the pressure drop and pore formation in the liquid phase. A comparison between the simulation results and experimental data permits a detailed understanding of the specific conditions under which hot tears form under given conditions. It is shown that the failure modes can be quite different for these two experiments and that, as a consequence, the appropriate hot tearing criterion may differ. It is foreseen that a fully predictive theoretical tool could be obtained by coupling such a model with a granular approach. These two techniques do, indeed, permit coverage of the range of the length scales and the physical phenomena involved in hot tearing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. CalcoSOFT 3D is a trademark of ESI-Group, Paris, France.

  2. Abaqus is a trademark of Abaqus Inc., Pawtucket, RI.

  3. ProCAST is a trademark of ESI-GROUP, Paris, France.

  4. Intel Xeon is a trademark of Intel Corporation, Santa Clara, CA.

  5. Intel Itanium is a trademark of Intel Corporation, Santa Clara, CA.

References

  1. D.G. Eskin, Suyitno, and L. Katgerman: Prog. Mater. Sci., 2004, vol. 49, pp. 629–711.

  2. U. Feurer: Giessereiforschung, 1976, vol. 28, pp. 750–80.

    Google Scholar 

  3. T.W. Clyne, and G.J. Davies: J. Brit. Foundry, 1981, vol. 74, pp. 65–73.

    Google Scholar 

  4. M. Rappaz, J.-M. Drezet, and M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 449–55.

    Article  ADS  CAS  Google Scholar 

  5. D. Warrington, and D.G. McCartney: Cast Met., 1989, vol. 2, pp. 134–43.

    Google Scholar 

  6. J.A. Spittle, and A.A. Cushway: Met. Technol., 1983, vol. 10, pp. 6–13.

    CAS  Google Scholar 

  7. J.-M. Drezet, and M. Rappaz: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3214–25.

    Article  ADS  CAS  Google Scholar 

  8. M. M’Hamdi, A. Mo, and H.G. Fjaer: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3069–83.

    Article  CAS  Google Scholar 

  9. O. Ludwig, J.-M. Drezet, C.L. Martin, and M. Suéry: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1525–35.

    Article  CAS  ADS  Google Scholar 

  10. C. Pequet, M. Gremaud, and M. Rappaz: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2095–2106.

    Article  CAS  Google Scholar 

  11. D.J. Lahaie, and M. Bouchard: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 697–705.

    Article  CAS  ADS  Google Scholar 

  12. B. Magnin, L. Maenner, L. Katgerman, and S. Engler: Mater. Sci. Forum, 1996, vols. 217–222, pp. 1209–14.

    Article  Google Scholar 

  13. V. Mathier, M. Rappaz, and A. Jacot: Model. Simul. Mater. Sci. Eng., 2004, vol. 12, pp. 479–90.

    Article  ADS  CAS  Google Scholar 

  14. S. Vernède, and M. Rappaz: Philos. Mag, 2006, vol. 86, pp. 3779–94.

    Article  ADS  CAS  Google Scholar 

  15. A. Stangeland, A. Mo, M. M’Hamdi, D. Viano, and C. Davidson: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 705–14.

    Article  CAS  Google Scholar 

  16. M. M’Hamdi, S. Benum, D. Mortensen, H.G. Fjaer, and J.-M. Drezet: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1941–52.

    Article  CAS  Google Scholar 

  17. V. Mathier, J.-M. Drezet, and M. Rappaz: Model. Simul. Mater. Sci. Eng., 2007, vol. 15, pp. 121–34.

    Article  ADS  CAS  Google Scholar 

  18. V. Mathier: Doctoral Thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2007.

  19. V. Mathier, P.-D. Grasso, and M. Rappaz: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1399–1409.

    Article  ADS  CAS  Google Scholar 

  20. V. Mathier, J.-M. Drezet, and M. Rappaz: MCWASP XI, Opio, France, The Minerals, Metals & Materials Society, TMS, Warrendale, 2006, pp. 643–50.

  21. O. Ludwig, J.-M. Drezet, P. Ménès, C.L. Martin, and M. Suéry: Mater. Sci. Eng., A, 2005, vols. 413–414, pp. 174–79.

    Google Scholar 

  22. W.M. Van Haaften, B. Magnin, W.H. Kool, and L. Katgerman: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1971–80.

    Article  ADS  Google Scholar 

  23. H.G. Fjaer, and A. Mo: Metall. Trans. B, 1990, vol. 21B, pp. 1049–61.

    CAS  ADS  Google Scholar 

  24. L.C. Nicolli, A. Mo, and M. M’Hamdi: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 433–42.

    Article  CAS  ADS  Google Scholar 

  25. B. Commet, P. Delaire, J. Rabenberg, and J. Storm: Light Met., 2003, pp. 711–17.

  26. P.-D. Grasso: Doctoral Thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2004.

  27. J.-M. Drezet: Doctoral Thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, 1996.

  28. A. Stangeland, A. Mo, and D. Eskin: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2219–29.

    Article  CAS  Google Scholar 

  29. Suyitno, W.H. Kool, and L. Katgerman: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1537–46.

    Article  CAS  ADS  Google Scholar 

  30. S. Vernède, P. Jarry, and M. Rappaz: Acta Mater., 2006, vol. 54, pp. 4023–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out as part of the POST project. The authors acknowledge the Commission for Technology and Innovation (CTI, Grant No. 6167.1) and the industrial partners (Alcan (Switzerland and France)), HydroAluminium (Germany), Umicore (Brussels, Belgium), and General Motors (Detroit, MI) are acknowledged for their financial support. Finally, the authors thank Drs. G. Couturier, J.-M. Drezet, and O. Ludwig for their help with the porosity module and mechanical models; the authors also thank J.-L. Desbiolles for his assistance with aspects of the software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Mathier.

Additional information

Manuscript submitted July 22, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathier, V., Vernède, S., Jarry, P. et al. Two-Phase Modeling of Hot Tearing in Aluminum Alloys: Applications of a Semicoupled Method. Metall Mater Trans A 40, 943–957 (2009). https://doi.org/10.1007/s11661-008-9772-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9772-2

Keywords

Navigation