Skip to main content
Log in

Mechanical Blocking Mechanism for the Columnar to Equiaxed Transition

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Mechanical blocking of the columnar front during the columnar to equiaxed transition (CET) is studied by quantitatively comparing the CET positions obtained with one stochastic model and two deterministic models for the unidirectional solidification of an Al-7 (wt pct) Si alloy. One of the deterministic models is based on the solutal blocking of the columnar front, whereas the other model is based on the mechanical blocking. The solutal-blocking model and the mechanical-blocking model with the traditional blocking fraction of 0.49 give columnar zones larger than those predicted with the stochastic model. When a blocking fraction of 0.2 is adopted, however, the agreement is very good for a range of nucleation undercoolings and number density of equiaxed grains. Therefore, changing the mechanical-blocking fraction in deterministic models from 0.49 to 0.2 seems to model more accurately the mechanical-blocking process that can lead to the CET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.C. Flood, J.D. Hunt: ASM Handbook, vol. 15, ASM, Materials Park, OH, 1998, pp. 130–36

    Google Scholar 

  2. D. StJohn, J. Hutt: Int. J. Cast Met. Res., 1998, vol. 11, pp. 13–22

    Google Scholar 

  3. H. Nguyen-Thi, G. Reinhart, N. Mangelinck-Noel, H. Jung, B. Billia, T. Schenk, J. Gastaldi, J. Hartwig, J. Baruchel: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1458–64

    Article  CAS  Google Scholar 

  4. J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75–83

    Article  CAS  Google Scholar 

  5. M.A. Martorano, C. Beckermann, C.A. Gandin: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1657–74

    Article  CAS  Google Scholar 

  6. S.C. Flood, J.D. Hunt: J. Cryst. Growth, 1987, vol. 82, pp. 543–51

    Article  CAS  Google Scholar 

  7. S.C. Flood, J.D. Hunt: J. Cryst. Growth, 1987, vol. 82, pp. 552–60

    Article  CAS  Google Scholar 

  8. C.Y. Wang, C. Beckermann: Metall. Mater. Trans. A, 1994, vol. 25, pp. 1081–93

    Article  Google Scholar 

  9. M.A. Martorano, V.B. Biscuola: Model. Simul. Mater. Sci. Eng., 2006, vol. 14, pp. 1225–43

    Article  CAS  Google Scholar 

  10. A. Jacot, D. Maijer, S. Cockcroft: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2059–68

    Article  CAS  Google Scholar 

  11. R.H. Mathiesen, L. Arnberg: Mater. Sci. Eng. A, 2005, vol. 413, pp. 283–87

    Article  Google Scholar 

  12. R.H. Mathiesen, L. Arnberg, P. Bleuet, A. Somogyi: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2515–24

    Article  CAS  Google Scholar 

  13. A. Ludwig, M. Wu: Mater. Sci. Eng. A, 2005, vol. 413, pp. 109–14

    Article  Google Scholar 

  14. A. Ciobanas, F. Baltaretu, Y. Fautrelle: Solidification and Gravity Iv, 2006, vol. 508, pp. 239–44

    CAS  Google Scholar 

  15. D.J. Browne: ISIJ Int., 2005, vol. 45, pp. 37–44

    Article  CAS  Google Scholar 

  16. J. Banaszek, S. McFadden, D.J. Browne, L. Sturz, G. Zimmermann: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1476–84

    Article  CAS  Google Scholar 

  17. S. McFadden, D.J. Browne: Scripta Mater., 2006, vol. 55, pp. 847–50

    Article  CAS  Google Scholar 

  18. D.J. Browne, J.D. Hunt: Numer. Heat Transfer B-Fund., 2004, vol. 45, pp. 395–419

    Article  Google Scholar 

  19. J.A. Spittle, S.G.R. Brown: J. Mater. Sci., 1989, vol. 24, pp. 1777–81

    Article  CAS  Google Scholar 

  20. C.A. Gandin, M. Rappaz: Acta Mater., 1997, vol. 45, pp. 2187–95

    Article  CAS  Google Scholar 

  21. M. Rappaz, C.A. Gandin, J.L. Desbiolles, P. Thevoz: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 695–705

    Article  CAS  Google Scholar 

  22. H.B. Dong, P.D. Lee: Acta Mater., 2005, vol. 53, pp. 659–68

    Article  CAS  Google Scholar 

  23. I.S. Cho, C.P. Hong: ISIJ Int., 1997, vol. 37, pp. 1098–106

    Article  CAS  Google Scholar 

  24. R.C. Atwood, P.D. Lee, R.S. Minisandram, R.M.F. Jones: J. Mater. Sci., 2004, vol. 39, pp. 7193–97

    Article  CAS  Google Scholar 

  25. A. Kermanpur, N. Varahram, P. Davami, M. Rappaz: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1293–1304

    Article  CAS  Google Scholar 

  26. D.R. Liu, J.J. Guo, S.P. Wu, Y.Q. Su, H.Z. Fu: Mater. Sci. Eng. A, 2006, vol. 415, pp. 184–94

    Article  Google Scholar 

  27. M. Wu, A. Ludwig: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1465–75

    Article  CAS  Google Scholar 

  28. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., New York, NY, 1980, pp. 54–59

    Google Scholar 

  29. C.A. Gandin, M. Rappaz: Acta Metall. Mater., 1994, vol. 42, pp. 2233–46

    Article  CAS  Google Scholar 

  30. M. Rappaz, C.A. Gandin: Acta Metall. Mater., 1993, vol. 41, pp. 345–60

    Article  CAS  Google Scholar 

  31. P. Thevoz, J.L. Desbiolles, M. Rappaz: Metall. Trans. A, 1989, vol. 20A, pp. 311–22

    CAS  Google Scholar 

  32. J. Lipton, M.E. Glicksman, W. Kurz: Mater. Sci. Eng., 1984, vol. 65, pp. 57–63

    Article  CAS  Google Scholar 

  33. T. Allen: Particle Size Measurement, Chapman & Hall, London, 1997, pp. 112–55

    Google Scholar 

  34. C.A. Gandin: Acta Mater., 2000, vol. 48, pp. 2483–2501

    Article  CAS  Google Scholar 

  35. M.A. Martorano, J.D.T. Capocchi: Int. J. Cast. Met. Res., 2000, vol. 13, pp. 49–57

    CAS  Google Scholar 

  36. C.A. Siqueira, N. Cheung, A. Garcia: J. Alloys Compd., 2003, vol. 351, pp. 126–34

    Article  CAS  Google Scholar 

  37. R.B. Mahapatra, F. Weinberg: Metall. Trans. B, 1987, vol. 18B, pp. 425–32

    Article  CAS  Google Scholar 

  38. I. Ziv, F. Weinberg: Metall. Trans. B, 1989, vol. 20B, pp. 731–34

    Article  CAS  Google Scholar 

  39. C.A. Gandin: ISIJ Int., 2000, vol. 40, pp. 971–79

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Fundação de Amparo à Pesquisa do Estado de São Paulo (Grant No. 03/08576-7) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant No. 475451/04-0) for the financial support and the scholarship to V.B. Biscuola.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.A. Martorano.

Additional information

Manuscript submitted on February 26, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biscuola, V., Martorano, M. Mechanical Blocking Mechanism for the Columnar to Equiaxed Transition. Metall Mater Trans A 39, 2885–2895 (2008). https://doi.org/10.1007/s11661-008-9643-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9643-x

Keywords

Navigation