Skip to main content
Log in

A Convective Heat-Transfer Model for Partial and Full Penetration Keyhole Mode Laser Welding of a Structural Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the keyhole mode laser welding of many important engineering alloys such as structural steels, convective heat transport in the weld pool significantly affects temperature fields, cooling rates, and solidification characteristics of welds. Here we present a comprehensive model for understanding these important weld parameters by combining an efficient keyhole model with convective three-dimensional (3-D) heat-transfer calculations in the weld pool for both partial and full penetration laser welds. A modified turbulence model based on Prandtl’s mixing length hypotheses is included to account for the enhanced heat and mass transfer due to turbulence in the weld pool by calculating spatially variable effective values of viscosity and thermal conductivity. The model has been applied to understand experimental results of both partial and full penetration welds of A131 structural steel for a wide range of welding speeds and input laser powers. The experimentally determined shapes of the partial and full penetration keyhole mode laser welds, the temperature profiles, and the solidification profiles are examined using computed results from the model. Convective heat transfer was the main mechanism of heat transfer in the weld pool and affected the weld pool geometry for A131 steel. Calculation of solidification parameters at the trailing edge of the weld pool showed nonplanar solidification with a tendency to become more dendritic with increase in laser power. Free surface calculation showed formation of a hump at the bottom surface of the full penetration weld. The weld microstructure becomes coarser as the heat input per unit length is increased, by either increasing laser power or decreasing welding velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. T. DebRoy, S.A. David: Rev. Mod. Phys., 1995, vol. 67, pp. 85–112

    Article  CAS  Google Scholar 

  2. D.E. Swift-Hook, A.E.F. Gick: Weld. J. (Miami), 1973, vol. 52, pp. 492s–499s

    Google Scholar 

  3. J.G. Andrews, D.R. Atthey: J. Phys. D: Appl. Phys., 1976, vol. 9, pp. 2181–94

    Article  Google Scholar 

  4. J. Kroos, U. Gratzke, G. Simon: J. Phys. D: Appl. Phys., 1993, vol. 26, pp. 474–80

    Article  CAS  Google Scholar 

  5. J. Mazumder, W.M. Steen: J. Appl. Phys., 1980, vol. 51, pp. 941–47

    Article  Google Scholar 

  6. E.A. Metzbower: Metall. Trans. B, 1993, vol. 24A, pp. 875–80

    Article  Google Scholar 

  7. A. Kaplan: J. Phys. D: Appl. Phys., 1994, vol. 27, pp. 1805–14

    Article  CAS  Google Scholar 

  8. H. Zhao, T. DebRoy: J. Appl. Phys., 2003, vol. 93, pp. 10089–10096

    Article  CAS  Google Scholar 

  9. R. Rai, T. DebRoy: J. Phys. D: Appl. Phys., 2006, vol. 39, pp. 1257–66

    Article  CAS  Google Scholar 

  10. R. Rai, G.G. Roy, and T. DebRoy: J. Appl. Phys., 2007, vol. 101 (5), Art. No. 054909

  11. H. Ki, P.S. Mohanty, J. Mazumder: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1817–30

    Article  CAS  Google Scholar 

  12. H. Ki, P.S. Mohanty, J. Mazumder: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1831–42

    Article  CAS  Google Scholar 

  13. J. Dowden, M. Davis, P. Kapadia: J. Fluid Mech., 1983, vol. 126, pp. 123–46

    Article  Google Scholar 

  14. J. Dowden, N. Postacioglu, M. Davis, P. Kapadia: J. Phys. D: Appl. Phys., 1987, vol. 20, pp. 36–44

    Article  CAS  Google Scholar 

  15. N. Postacioglu, P. Kapadia, M. Davis, J. Dowden: J. Phys. D: Appl. Phys., 1987, vol. 20, pp. 340–45

    Article  Google Scholar 

  16. P.G. Klemens: J. Appl. Phys., 1976, vol. 47, pp. 2165–74

    Article  Google Scholar 

  17. W. Sudnik, D. Radaj, W. Erofeew: J. Phys. D: Appl. Phys., 1996, vol. 29, pp. 2811–17

    Article  CAS  Google Scholar 

  18. R.B. Bird, W.E. Stewart, E.N. Lightfoot: Transport Phenomena, Wiley, New York, NY, 1960

    Google Scholar 

  19. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York, NY, 1980

    Google Scholar 

  20. V.R. Voller, C. Prakash: Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 1709–19

    Article  CAS  Google Scholar 

  21. A.D. Brent, V.R. Voller, K.J. Reid: Numer. Heat Transfer Part A, 1988, vol. 13, pp. 297–318

    Article  Google Scholar 

  22. K. Mundra, T. DebRoy, K.M. Kelkar: Numer. Heat Transfer Part A, 1996, vol. 29, pp. 115–29

    Article  CAS  Google Scholar 

  23. A. Kumar, T. DebRoy: J. Appl. Phys., 2003, vol. 94, pp. 1267–77

    Article  CAS  Google Scholar 

  24. S. Kou, D.K. Sun: Metall. Trans. A, 1985, vol. 16A, pp. 203–13

    CAS  Google Scholar 

  25. C.H. Kim, W. Zhang, T. DebRoy: J. Appl. Phys., 2003, vol. 94, pp. 2667–79

    Article  CAS  Google Scholar 

  26. A. De and T. DebRoy: J. Phys. D: Appl. Phys., 2004, vol. 37, pp. 140–50

  27. A. De and T. DebRoy: J. Appl. Phys., 2004, vol. 95 (9), pp. 5230–39

  28. W. Pitscheneder, T. DebRoy, K. Mundra, R. Ebner: Weld. J. (Miami), 1996, vol. 75, 71s–80s

    Google Scholar 

  29. H. Zhao, T. DebRoy: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 163–72

    Article  CAS  Google Scholar 

  30. D.C. Wilcox: Turbulence Modeling for CFD, DCW Industries, La Canada, CA, 1993

    Google Scholar 

  31. B.E. Launder, D.B. Spalding: Lectures in Mathematical Models of Turbulence, Academic Press, London, 1972

    Google Scholar 

  32. K. Hong: Ph.D. Thesis, University of Waterloo, Waterloo, 1996, pp. 145–46

  33. Z. Yang, T. DebRoy: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 483–93

    Article  CAS  Google Scholar 

  34. W. Zhang, C.L. Kim, T. DebRoy: J. Appl. Phys., 2004, vol. 95, pp. 5210–19

    Article  CAS  Google Scholar 

  35. W. Zhang, C.L. Kim, T. DebRoy: J. Appl. Phys., 2004, vol. 95, pp. 5220–29.

    Article  CAS  Google Scholar 

  36. R.L. Ketter, S.P. Prawel: Modern Methods of Engineering Computation, McGraw-Hill, New York, NY, 1969.

    Google Scholar 

  37. D.R. Atthey: J. Fluid Mech., 1980, vol. 98, pp. 787–801

    Article  CAS  Google Scholar 

  38. K. Hong, D.C. Weckman, A.B. Strong, W. Zheng: Sci. Technol. Weld. Joining, 2002, vol. 7, pp. 125–36.

    Article  CAS  Google Scholar 

  39. K. Hong, D.C. Weckman, A.B. Strong, W. Zheng: Sci. Technol. Weld. Joining, 2003, vol. 8, pp. 313–24

    Article  Google Scholar 

  40. M.L. Lin, T.W. Eagar: Metall. Trans. B, 1986, vol. 17B, pp. 601–07

    Article  Google Scholar 

  41. X. He, J. Elmer, and T. DebRoy: J. Appl. Phys., 2005, vol. 97, Art. No. 84909

  42. H. Geiger, D.R. Poirier: Transport Phenomena in Metallurgy, Addison Wesley, London, 1973

    Google Scholar 

  43. D. Rosenthal: Trans. ASME, 1946, vol. 48, pp. 849–66

    Google Scholar 

  44. R. Miller, T. DebRoy: J. Appl. Phys., 1990, vol. 68 (5), pp. 2045–50

    Article  CAS  Google Scholar 

  45. M.M. Collur, T. DebRoy: Metall. Trans. B, 1989, vol. 20B, pp. 277–86

    CAS  Google Scholar 

  46. A. Block-Bolten, T.W. Eagar: Metall. Trans. B, 1984, vol. 15B, pp. 461–69

    Article  CAS  Google Scholar 

  47. M.M. Collur, A. Paul, T. DebRoy: Metall. Trans. B, 1987, vol. 18B, pp. 733–40

    Article  CAS  Google Scholar 

  48. P. Sahoo, M.M. Collur, T. DebRoy: Metall. Trans. B, 1988, vol. 19B, pp. 967–72

    Article  CAS  Google Scholar 

  49. E.A. Brandes and G.B. Brook, eds., Smithells Metals Reference Book, 7th ed., Butterworth Heinemann, Woburn, MA, 1992, pp. 8–51

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. DebRoy.

Additional information

Manuscript submitted December 22, 2006.

Appendices

Appendix I

Because the orientation of keyhole is almost vertical, the heat transfer at the keyhole wall takes place mainly along the horizontal plane. A heat balance on the keyhole wall gives the following relation for local keyhole wall angle θ:[7,8]

$$ \tan {\left( \theta \right)} = \frac{{I_{c} }} {{I_{a} - I_{v} }} $$
(Ia)

where I c is the radial heat flux conducted into the keyhole wall, I a is the locally absorbed beam energy, and I v is the evaporative heat flux on the keyhole wall. The value of I c is obtained from a 2-D temperature field in an infinite plate with reference to a linear heat source. The term I c is defined as

$$ I_{c} {\left( {r,\varphi } \right)} = - \lambda \frac{{\partial T{\left( {r,\varphi } \right)}}} {{\partial r}} $$
(Ib)

where (r,φ) designates the location in the plate with the line source as the origin, T is the temperature, and λ is the thermal conductivity. The 2-D temperature field can be calculated considering the conduction of heat from the keyhole wall into the infinite plate as[41]

$$ T{\left( {r,\varphi } \right)} = T_{a} + \frac{{P^{\prime } }} {{2\pi \lambda }}K_{0} {\left( {\Omega r} \right)}e^{{ - \Omega r\cos \varphi }} $$
(Ic)

where T a is the ambient temperature, \( P^{'} \) is the power per unit depth, K 0() is the solution of the second kind and zero-order modified Bessel function, and Ω = v/(2κ), where v is the welding speed and κ is the thermal diffusivity.

The locally absorbed beam energy flux, I a , on the keyhole wall that accounts for the absorption during multiple reflections and the plasma absorption is calculated as[8]

$$ I_{a} = e^{{ - \beta l}} {\left( {1 - {\left( {1 - \alpha } \right)}^{{1 + \pi /4\theta }} } \right)}I_{0} $$
(Id)

where β is the inverse Bremsstrahlung absorption coefficient of plasma, l is the average path of the laser beam in plasma before it reaches the keyhole wall, α is the absorption coefficient of the work piece, θ is the average angle between the keyhole wall and the initial incident beam axis, and I 0 is the local incident beam intensity that varies with depth from the surface and radial distance from the beam axis.[8] Constant laser beam absorption coefficient, independent of location, is assumed for the plasma in the keyhole and for the laser beam absorption at the keyhole wall. The keyhole profile is first calculated without considering multiple reflections. With the approximate keyhole dimensions, the average angle between the keyhole wall and incident beam axis is then calculated.[8]

The factor \( 1 + \frac{\pi } {{4\theta }} \) represents the average number of reflections that a laser beam undergoes before leaving the keyhole.[8] When a laser beam of intensity I 0 traverses a length l in the plasma before reaching the material surface, (1−e βl)I 0 is absorbed by the plasma. Of the remaining −e βl I 0 that falls on the material, (1−α)−e βl I 0 is reflected. After \( 1 + \frac{\pi } {{4\theta }} \) reflections, (1−α)1+π/4θ e βl I 0 of the intensity is reflected and the remaining (1− (1−α)1+π/4θ)e βl I 0 is absorbed. For α = 0.16 and \( 1 + \frac{\pi } {{4\theta }} \) = 6, l = 0.5 mm, about 5 pct of the local beam intensity is absorbed by the plasma,[44,45] about 65 pct is absorbed by the material, and the remaining 30 pct leaves the keyhole.

The evaporative heat flux, I v , on the keyhole wall is given as

$$ I_{v} = {\sum\limits_{i = 1}^n {J_{i} \Delta H_{i} } } $$
(Ie)

where n is the total number of alloying elements in the alloy, ΔH i is the heat of evaporation of element i, and J i is the evaporation flux of element i given by the modified Langmuir equation:[4648]

$$ J_{i} = \frac{{a_{i} P^{0}_{i} }} {{{\text{7}}{\text{.5}}}}{\sqrt {\frac{{M_{i} }} {{2\pi {\text{R}}T_{b} }}} } $$
(If)

where a i is the activity of element i, \( P^{0}_{i} \) is the equilibrium vapor pressure of element i over pure liquid at the boiling point T b , and M i is the molecular weight of element i. The factor 7.5 is used to account for the diminished evaporation rate at one atmosphere pressure compared to the vaporization rate in vacuum and is based on previous experimental results.[46,47]

Appendix II

Recoil pressure exerted by the metal vapors can be given by the difference between the momentum of the vapors leaving the surface and the z-direction momentum of the liquid near the liquid-vapor interface.

$$ P_{{{\text{rec}}}} = \rho _{g} v^{2}_{g} - \rho _{l} v^{2}_{l} $$
(IIa)

The subscripts g and l stand for gas and liquid, respectively, and the velocities normal to the liquid-vapor interface. Because, by mass conservation,

$$ \rho _{g} v_{g} = \rho _{l} v_{l}\ {\text{and }}\rho _{g} \ll \rho _{l} $$
(IIb)
$$ v_{g} \gg v_{l} $$
(IIc)

Therefore,

$$ P_{{{\text{rec}}}} = {\left( {\rho _{g} v_{g} } \right)}v_{g} - {\left( {\rho _{l} v_{l} } \right)}v_{l} = {\left( {\rho _{g} v_{g} } \right)}{\left( {v_{g} - v_{l} } \right)} \approx \rho _{g} v^{2}_{g} $$
(IId)
$$ P_{{{\text{rec}}}} \approx J_{g} v_{g} $$
(IIe)

where J g is the vaporization flux, which can be calculated from the Langmuir equation given in Eq. [IIf]:

$$ v_{g} = J_{g} /c $$
(IIf)

where c is the concentration of the metal vapors and is given by

$$ c = \frac{{Mp_{v} }} {{{\text{R}}T}} $$
(IIg)

where M is the molecular weight of iron, and p v is the vapor pressure of iron at temperature T, calculated from an empirical relation.[49]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, R., Kelly, S., Martukanitz, R. et al. A Convective Heat-Transfer Model for Partial and Full Penetration Keyhole Mode Laser Welding of a Structural Steel. Metall Mater Trans A 39, 98–112 (2008). https://doi.org/10.1007/s11661-007-9400-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9400-6

Keywords

Navigation