Skip to main content
Log in

Crystallography of Fatigue Crack Propagation in Precipitation-Hardened Al-Cu-Mg/Li

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A combined electron backscatter diffraction (EBSD)/stereology method successfully quantifies the orientation of fatigue crack surfaces for Al-Li-Cu and Al-Cu-Mg alloys stressed at low ΔK, in which deformation is localized in slip bands and cracking is highly faceted. The method orients features as small as ∼1 μm in complex microstructures. Vacuum fatigue facets align within 15 deg of up to four variants of {111} slip planes, governed by the distribution of crack tip resolved shear stress. The small fraction of precisely oriented {111} facets suggests that cracking involves complex intraband and multiple-band interface paths. Water vapor and NaCl solution affect a similar dramatic change in the crack path; near-{111} facets are never observed, at odds with mechanisms for H-enhanced slip localization and associated slip band cracking. Rather, two environmental crack facet morphologies, broad flat and repeating step, exhibit a wide range of orientations between {001} and {110}, as governed by crack tip resolved normal stresses. The repetitive stepped facets appear to contain areas parallel to {100}/{110} on the ∼1-μm scale, coupled with surface curvature consistent with a mechanism of discontinuous fatigue crack growth involving H-enhanced {100}/{110} cleavage and intermingled crack tip plasticity. Broad-flat faceted regions are parallel to a variety of planes, consistent with a mechanism combining high crack tip tensile stresses and H trapped at the dislocation structure from cyclic deformation, within 1 μm of the crack tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. While grain and facet orientations are not measured at exactly the same point, the method uncertainty of 2.8 deg includes 1.6 deg, to account for such intragranular grain orientation differences.[32] For a specific facet location, larger uncertainty in grain orientation may arise due to a microstructure that is nonrandomly distributed.

  3. The X and Y axes are parallel to the crack propagation direction and the loading axis, respectively for this mode I situation. The Z axis is perpendicular to the X-Y plane. In this study, X//T, Y//L, and Z//S.

  4. This analysis is relatively insensitive to the specific choice of θ over which the resolved shear stress is averaged. Values of θ up to ±π/2 were analyzed and these expanded the region of high shear stress until it formed an annulus about the center of the stereographic projection in Fig. 13(a), rather than the two lobes to the right and left of the center. Facet observations also form a ring about the center of the stereographs, but have the highest density in the regions highlighted by the selected θ from −π/4 to +π/4.

References

  1. K.T. Venkateswara, Rao R.O. Ritchie: Int. Mater. Rev., 1992, vol. 37 (4) pp. 153–85

    Google Scholar 

  2. R.S. Piascik, R.P. Gangloff: Metall. Trans. A, 1993, vol. 24A, pp. 2751–62

    CAS  Google Scholar 

  3. D.C. Slavik, C.P. Blankenship Jr., E.A. Starke Jr., R.P. Gangloff: Metall. Trans. A, 1993, vol. 24A, pp. 1807–17

    CAS  Google Scholar 

  4. D.C. Slavik, R.P. Gangloff: Acta Mater., 1996, vol. 44, pp. 3515–34

    Article  CAS  Google Scholar 

  5. D.C. Slavik, J.A. Wert, R.P. Gangloff: J. Mater. Res., 1993, vol. 8 (10), pp. 2482–91

    Article  CAS  Google Scholar 

  6. D. Li, R.P. Gangloff, G.H. Bray, M.V. Glazov, R.J. Rioja: in Advances in the Metallurgy of Aluminum Alloys, M. Tiryakioglu, ed., ASM INTERNATIONAL, Materials Park, OH, 2001, pp. 105–18

    Google Scholar 

  7. G.H. Bray, M.V. Glazov, R.J. Rioja, D. Li, R.P. Gangloff: Int. J. Fatigue, 2001, vol. 23, pp. 265–76

    Article  Google Scholar 

  8. J. Petit, J. de Fouquet, G. Henaff: in Handbook on Fatigue Crack Propagation in Metallic Structures, A. Carpinteri, ed., Elsevier, New York, NY, 1994, pp. 1159–1204

    Google Scholar 

  9. R.P. Gangloff: Fatigue '02, A.F. Blom, ed., Engineering Materials Advisory Services, West Midlands, United Kingdom, 2002, pp. 3401–34

  10. Y.J. Ro: Master’s Thesis, University of Virginia, Charlottesville, VA, 2004

  11. T.H. Sanders Jr., E.A. Starke Jr.: Acta Metall., 1982, vol. 30, pp. 927–39

    Article  CAS  Google Scholar 

  12. K.V. Jata, E.A. Starke Jr.: Metall. Trans. A, 1986, vol. 17A, pp. 1011–26

    CAS  Google Scholar 

  13. M. Lewandowska, J. Mizera, J.W. Wyrzykowski: Mater. Charact., 2000, vol. 45, pp. 195–202

    Article  CAS  Google Scholar 

  14. A. Brotzu, M. Cavallini, F. Felli, and M. Marchetti: Fatigue in the Presence of Corrosion, RTO AVT Workshop, NATO Report No. RTO-MP-18 (AC/323(AVT)TP/8), Corfu, Greece, 1998, pp. 8-1–8-12

  15. N. Ranganathan, F. Adiwijayanto, J. Petit, J.P. Bailon: Acta Metall. Mater., 1995, vol. 43 (3), pp. 1029–35

    Article  CAS  Google Scholar 

  16. N. Ranganathan, S.Q. Li, J.P. Bailon, J. Petit: Mater. Sci. Eng., A, 1994, vol. A187, pp. 37–42

    CAS  Google Scholar 

  17. G.R. Yoder, P.S. Pao, M.A. Imam, L.A. Cooley: Scripta Metall., 1988, vol. 22, pp. 1241–44

    Article  CAS  Google Scholar 

  18. K.J. Nix, H.M. Flower: Acta Metall., 1982, vol. 30, pp. 1549–59

    Article  Google Scholar 

  19. R.J.H. Wanhill: Metall. Trans. A, 1975, vol. 6A, pp. 1587–96

    CAS  Google Scholar 

  20. J. Lankford, D.L. Davidson: Acta Metall., 1983, vol. 31 (8), pp. 1273–84

    Article  CAS  Google Scholar 

  21. R.M.N. Pelloux: Trans. ASM, 1969, vol. 62, pp. 281–85

    CAS  Google Scholar 

  22. C.Q. Bowles, D. Broek: Int. J. Fract. Mech., 1972, vol. 8 (1), pp. 75–85

    Article  Google Scholar 

  23. D.A. Meyn: Trans. ASM, 1968, vol. 61, pp. 52–61

    Google Scholar 

  24. P.J.E. Forsyth: Acta Metall., 1963, vol. 11, pp. 703–15

    Article  Google Scholar 

  25. J.A. Feeney, J.C. McMillan, R.P. Wei: Met. Trans., 1970, vol. 1, pp. 1741–57

    Article  CAS  Google Scholar 

  26. R.W. Hertzberg and W.J. Mills: in Fractography—Microscopic Cracking Processes, C.D. Beachem and W.R. Warke, eds., ASTM STP 600, ASTM, West Conshohocken, PA, 1976, vol. 11, pp. 220–34

  27. J. Beevers: Met. Sci., 1977, vol. 11, pp. 362–67

    CAS  Google Scholar 

  28. R.P. Wei and R.P. Gangloff: in Fracture Mechanics: Perspectives and Directions, ASTM STP 1020, R.P. Wei and R.P. Gangloff, eds., ASTM, Philadelphia, PA, 1989, pp. 233–64

  29. S.P. Lynch: Corros. Sci., 1982, vol. 22 (10), pp. 925–37

    Article  CAS  Google Scholar 

  30. G.G. Garrett, J.F. Knott: Acta Metall., 1975, vol. 23, pp. 841–48

    Article  CAS  Google Scholar 

  31. K.R.L. Thompson, J.V. Craig: Metall. Trans., 1970, vol. 1, pp. 1047–49

    CAS  Google Scholar 

  32. Y.J. Ro, S.R. Agnew, R.P. Gangloff: Scripta Metall., 2005, vol. 52, pp. 531–36

    Article  CAS  Google Scholar 

  33. B.M. Gable, A.W. Zhu, A.A. Csontos, E.A. Starke Jr.: J. Light Met., 2001, vol. 1 (1), pp. 1–14

    Article  Google Scholar 

  34. H.J. McQueen: JOM, 1998, vol. 50 (6), pp. 28–33

    Article  CAS  Google Scholar 

  35. J. Hirsch, O. Engler: in Microstructural and Crystallographic Aspects of Recrystallization, N. Hansen, D. Juul Jensen, Y.L. Liu, B. Ralph, eds., Risø National Laboratory, Roskilde, Denmark, 1995, pp. 48–62

    Google Scholar 

  36. A.W. Bowen: Mater. Sci. Technol., 1990, vol. 6, pp. 1058–71

    CAS  Google Scholar 

  37. B. Ren: in Aluminum Alloys for Packaging II, J.G. Morris, S.K. Das, H.S. Goodrich, eds., TMS, Warrendale, PA, 1996, pp. 41–48

    Google Scholar 

  38. W. Truszkowski, J. Krǒl, B. Major: Metall. Trans. A, 1980, vol. 11A, pp. 749–58

    CAS  Google Scholar 

  39. T. Kamijo, M. Kikuchi, M. Saga: Mater. Sci. Forum, 1996, vols. 217–222, pp. 577–82

    Article  Google Scholar 

  40. P.A. Davies, V. Randle: J. Microsc., 2001, vol. 204, pp. 29–38

    Article  CAS  Google Scholar 

  41. J.L. Nelson, J.A. Beavers: Metall. Trans. A, 1979, vol. 10A, pp. 658–62

    CAS  Google Scholar 

  42. G. Themelis, S. Chikwembani, J. Weertman: Mater. Charact., 1990, vol. 24, pp. 27–40

    Article  CAS  Google Scholar 

  43. J.A. Wert, W.M. Robertson: Metallography, 1982, vol. 15, pp. 367–81

    Article  CAS  Google Scholar 

  44. P.C. Chen, R.C. Wilcox: Mater. Charact., 1991, vol. 26, pp. 9–15

    Article  CAS  Google Scholar 

  45. A.P. Reynolds, G.E. Stoner: Metall. Trans. A, 1991, vol. 22A, pp. 1849–55

    CAS  Google Scholar 

  46. F.S. Lin, E.A. Starke Jr.: Mater. Sci. Eng., 1980, vol. 43, pp. 65–76

    Article  CAS  Google Scholar 

  47. R.D. Carter, E.W. Lee, E.A. Starke Jr., C.J. Beevers: Metall. Trans. A, 1984, vol. 15A, pp. 555–63

    CAS  Google Scholar 

  48. E.A. Starke, Jr. and J.C. Williams: in Fracture Mechanics: Perspective and Directions (Twenty Symp.), R.P. Wei and R.P. Gangloff, eds., ASTM STP 1020, ASTM, West Conshohocken, PA, 1989, pp. 184–205

  49. E. Hornbogen, K.-H.Z. Gahr: Acta Metall., 1976, vol. 24, pp. 581–92

    Article  CAS  Google Scholar 

  50. Y. Brechet, F. Louchet, C. Marchionni, J.L. Verger-Gaugry: Philos. Mag. A, 1987, vol. 56 (3), pp. 353–66

    Article  CAS  Google Scholar 

  51. R. Tintillier, H.J. Gudladt, V. Gerold, J. Petit: in Aluminum-Lithium V, T.H. Sanders, E.A. Starke Jr., eds., Materials and Component Engineering Publications Ltd., Birmingham, United Kingdom, 1989, pp. 1135–46

    Google Scholar 

  52. J.R. Rice: Mech. Mater., 1987, vol. 6, pp. 317–35

    Article  Google Scholar 

  53. W.C. Crone, T.W. Shield: J. Mech. Phys. Solids, 2001, vol. 49, pp. 2819–38

    Article  CAS  Google Scholar 

  54. D.A. Koss, K.S. Chan: Acta Metall., 1980, vol. 28, pp. 1245–52

    Article  CAS  Google Scholar 

  55. R.A. Oriani: Corros., 1987, vol. 43 (7), pp. 390–97

    CAS  Google Scholar 

  56. R.A. Oriani: in Stress Corrosion Cracking and Hydrogen Embrittlement of Iron-Base Alloys, R.W. Staehle, J. Hochmann, R.D. McCright, J.E. Slater, eds., NACE, Houston, TX, 1977, pp. 351–57

    Google Scholar 

  57. S.P. Lynch: in Hydrogen Effects on Material Behavior and Corrosion Deformation Interactions, N.R. Moody, A.W. Thompson, R. Ricker, G. Was, R. Jones, eds., TMS, Warrendale, PA, 2002, pp. 449–66

    Google Scholar 

  58. S.P. Lynch: Acta Metall., 1988, vol. 36 (10), pp. 2639–61

    Article  CAS  Google Scholar 

  59. T. Tabata, H.K. Birnbaum: Scripta Metall., 1983, vol. 17, pp. 947–50

    Article  CAS  Google Scholar 

  60. G.M. Bond, I.M. Robertson, H.K. Birnbaum: Acta Metall., 1987, vol. 35 (9), pp. 2289–96

    Article  CAS  Google Scholar 

  61. I.M. Robertson: Eng. Fract. Mech., 1999, vol. 64, pp. 649–73

    Article  Google Scholar 

  62. I.M. Robertson: Eng. Fract. Mech., 2001, vol. 68, pp. 671–92

    Article  Google Scholar 

  63. P. Sofronis and I.M. Robertson: Philos. Mag. A, 2002, vol. 82, pp. 3405–13

    Google Scholar 

  64. P. Rieux, J. Driver, J. Rieu: Acta Metall., 1979, vol. 27, pp. 145–53

    Article  CAS  Google Scholar 

  65. F.O. Riemelmoser, P. Gumbsch, R. Pippan: Mater. Trans., 2001, vol. 42 (1), pp. 2–13

    Article  CAS  Google Scholar 

  66. F.O. Riemelmoser, R. Pippan, H.P. Stuwe: Acta Mater., 1998, vol. 46 (5), pp. 1793–99

    Article  CAS  Google Scholar 

  67. E. Gach and R. Pippan: in Advances in Fracture Research, T. Kishi, Y.-W. Mai, R.O. Ritchie, K. Ravi-Chandar, and A.T. Yokobori, Jr., eds., ICF 10, Elsevier Science, Oxford, United Kingdom, 2001, paper no. ICF100420OR

  68. C. Fong, D. Tromans: Metall. Trans. A, 1988, vol. 19A, pp. 2765–73

    CAS  Google Scholar 

  69. R.S. Piascik, R.P. Gangloff: Metall. Trans. A, 1991, vol. 22A, pp. 2415–28

    CAS  Google Scholar 

  70. M. Gao, P.S. Pao, R.P. Wei: Metall. Trans. A, 1988, vol. 19A, pp. 1739–50

    CAS  Google Scholar 

  71. R.P. Gangloff: Comprehensive Structural Integrity, I. Milne, R.O. Ritchie, and B. Karihaloo, eds., Elsevier Science, New York, NY, 2003, vol. 6, pp. 31–101

  72. P.J.E. Forsyth, C.A. Stubbington, and D. Clarke: J. Inst. Met., 1961–1962, vol. 90, pp. 238–39

  73. L. Christodoulou, H.M. Flower: Acta Metall., 1980, vol. 28, pp. 481–87

    Article  CAS  Google Scholar 

  74. D.A. Jones, A.F. Jankowski, and G.A. Davidson: Corrosion 97, NACE, Houston, TX, 1997, paper no. 188

  75. K.R. Cooper, L.M. Young, R.P. Gangloff, R.G. Kelly: Mater. Sci. Forum, 2000, vols. 331–337, pp. 1625–34

    Google Scholar 

  76. J.E. Angelo, N.R. Moody, M.I. Baskes: Modell. Simul. Mater. Sci. Eng., 1995, vol. 3, pp. 289–307

    Article  CAS  Google Scholar 

  77. N.R. Moody, M.I. Baskes, S.L. Robinison, M.W. Perra: Eng. Fract. Mech., 2001, vol. 68, pp. 731–50

    Article  Google Scholar 

  78. J.P. Hirth: Metall. Trans. A, 1980, vol. 11A, pp. 861–90

    CAS  Google Scholar 

  79. J.R. Scully, G.A. Young Jr., S.W. Smith: Mater. Sci. Forum, 2000, vols. 331–337, pp. 1583–99

    Google Scholar 

  80. Y.J. Ro, M.R. Begley, R.P. Gangloff, S.R. Agnew: Mater. Sci. Eng. A, 2006, vols. 435–436, pp. 333–42

    Google Scholar 

  81. R. Sunder: Fatigue Fract. Eng. Mater. Struct., 2005, vol. 28, pp. 289–300

    Article  Google Scholar 

  82. J.C. Grosskreutz, G.G. Shaw: Acta Metall., 1972, vol. 20, pp. 523–28

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported financially by the United States Air Force Office of Scientific Research, Grant No. F46920-03-1-0155, with Drs. C.S. Hartley, J. Tiley, and B. Conner as scientific officers, and by the ALCOA Technical Center, with Dr. G.H. Bray as technical monitor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Gangloff.

Additional information

Manuscript submitted October 13, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ro, Y., Agnew, S. & Gangloff, R. Crystallography of Fatigue Crack Propagation in Precipitation-Hardened Al-Cu-Mg/Li. Metall Mater Trans A 38, 3042–3062 (2007). https://doi.org/10.1007/s11661-007-9344-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9344-x

Keywords

Navigation