Skip to main content
Log in

Process-Controlled Microstructure and Cast Morphology of Dendrite in Pulsed-Current Gas-Metal Arc Weld Deposits of Aluminum and Al-Mg Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructure and cast morphology of pulsed-current gas-metal arc (GMA) weld deposit of 1.6-mm-diameter aluminum (ER1100) and Al-Mg alloy (ER5183) filler wire have been studied on similar base material. The effect of the influence of the pulse frequency taken together with the peak and background currents and their durations, as defined by a dimensionless factor φ, varied in the range of 0.05 to 0.4 on the solidification behavior of the weld metal with respect to the morphology of its cast microstructure has been studied. The morphology of the dendrite as revealed under the scanning electron microscope (SEM) has been studied in reference to the change in the length of its coaxial growth, its aspect ratio, and its primary arm spacing, related to the variation in the factor φ. It is shown that the microstructure of the weld metal changes significantly with the change in the factor φ. It is also found that the variation in the mean current and heat input significantly affects the morphology of the dendrite, as defined here. The morphological characteristics of the dendrites have been correlated to the factor φ, the mean current, and the heat input. The dendrite arm spacing has been found to maintain a good correlation with the estimated cooling rate of the weld metal, in that it decreases with the increase in the cooling rate. At a given heat input, mean current, and φ, the Al-Mg alloy contains a comparatively larger fraction of finer dendrites with an appropriately similar morphology than does the aluminum weld deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. E. Wiston: Data Sheets, IIW Manual, International Institute of Welding, 1974, p. 24

  2. T. DebRoy and S.A. David: Rev. Mod. Phys., 1995, vol. 67 (1)

  3. W. Gruhl, H. Cordier: Z. Metallkd., 1964, vol. 55, p. 557

    Google Scholar 

  4. F. Matsuda, K. Nakata, K. Tsukamoto, S. Johgan: Trans. JWRI, 1985, vol. 14 (2), p. 299

    CAS  Google Scholar 

  5. P.K. Ghosh, V. Sharma: Mater. Trans., JIM, 1991, vol. 32 (2), pp. 145–50

    CAS  Google Scholar 

  6. P.K. Ghosh, S.R. Gupta, P.C. Gupta, R. Rathi: Pract. Met., 1990, vol. 27, pp. 613–26

    Google Scholar 

  7. N.B. Potluri, P.K. Ghosh, P.C. Gupta, and Y.S. Reddy: Weld. J., 1996, vol. 75, pp. 62s–70s

  8. P.K. Ghosh, S.R. Gupta, H.S. Randhawa: Int. J. Join. Mater., 2000, 12 (3), pp. 76–85

    Google Scholar 

  9. P.K. Ghosh: Int. J. Join. Mater., 1996, vol. 8 (4), pp. 157–61

    Google Scholar 

  10. P.K. Ghosh, B.K. Rai: ISIJ Int., 1996, vol. 36 (8), pp. 1036–45

    CAS  Google Scholar 

  11. H.S. Randhawa, P.K. Ghosh, S.R. Gupta: ISIJ Int., 1998, vol. 38 (3), pp. 276–84

    CAS  Google Scholar 

  12. P.K. Ghosh, B.K. Rai: Ind. Weld. J., 1998, vol. 31 (4), pp. 30–39

    Google Scholar 

  13. P.K. Ghosh, S.R. Gupta, H.S. Randhawa: Int. J. Join. Mater., 1999, vol. 11 (4), pp. 99–110

    Google Scholar 

  14. H.S. Randhawa, P.K. Ghosh, S.R. Gupta: ISIJ Int., 2000, vol. 40 (1), pp. 71–76

    CAS  Google Scholar 

  15. P.K. Ghosh, H.S. Randhawa, S.R. Gupta: Metall. Trans. A, 2000, vol. 31A (12), pp. 2247–59

    Article  CAS  Google Scholar 

  16. P.K. Ghosh, L. Dorn, S.F. Goecke: Int. J. Join. Mater., 2001, vol. 13 (2), pp. 40–47

    Google Scholar 

  17. P. K. Ghosh, L. Dorn, Marc Hübner, and V.K. Goyal: J. Mater. Processing Technol., 2006, in press

  18. P.K. Ghosh: Int. Welding Conference (IWC 99), on Welding and Allied Technology, New Delhi, India, Feb. 15–17, Indian Institute of Welding, Calcutta, 1999, pp. 18–27

  19. M.F. Ashby, K.E. Easterling: Acta Metall., 1982, vol. 30, pp. 1969–78

    Article  CAS  Google Scholar 

  20. H.M. Hussain, P.K. Ghosh, P.C. Gupta, N.B. Potluri: J. Mater. Process. Tech., 1997, vol. 9 (2), pp. 74–80

    Google Scholar 

  21. P.K. Ghosh, V.K. Goyal, H.K. Dhiman, M. Kumar: Sci. Technol. Weld. Join., 2006, vol. 11 (2), pp. 232–42

    Article  CAS  Google Scholar 

  22. V.K. Goyal, P.K. Ghosh, and J.S. Saini: J. Mater. Process. Technol., 2006, in press

  23. M.E. Glicksman: Fundamentals of Dendritic Microstructures, Aluminum Transformation Technology and Applications, Proc. 2nd Int. Symp., Buenos Aires, Argentina, Aug. 1981, ASM, Metals Park, OH, 1981, pp. 24–26

  24. M.C. Flemings: Solidification Processing, McGraw-Hill Book Company, New York, NY, 1974

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.K. Ghosh.

Additional information

Manuscript submitted November 20, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goyal, V., Ghosh, P. & Saini, J. Process-Controlled Microstructure and Cast Morphology of Dendrite in Pulsed-Current Gas-Metal Arc Weld Deposits of Aluminum and Al-Mg Alloy. Metall Mater Trans A 38, 1794–1805 (2007). https://doi.org/10.1007/s11661-007-9217-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9217-3

Keywords

Navigation