Skip to main content
Log in

Three-Dimensional Characterization of Incipiently Spalled Tantalum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Three-dimensional (3-D) characterization techniques have been applied to quantitatively assess shock-induced damage in an incipiently spalled tantalum plate. A significant sample volume was imaged and volumetrically reconstructed via serial sectioning techniques. An analysis of segmented void damage revealed distributions regarding void size, morphology, spatial variations, and nearest-neighbor distances (NNDs). The latter two distributions highlight the necessity of 3-D data sets to capture the feature statistics. Very limited correlation was observed between void size and clustering tendency. Electron backscatter diffraction (EBSD) was applied to investigate spatial relationships between the damage features and the relative levels of induced plasticity. Large variations in microstructural character were found between different intervoid regions, independent of ligament width. The use of intragranular misorientation deviation (IMD) maps in two and three dimensions reveals surprisingly contiguous and complex plastic linkages not obviously predicted from the void-dominated damage field. Overall, 3-D characterization of shock-damaged material is shown to provide statistics and insight regarding the true damage field unobtainable from two-dimensional (2-D) data sets, and will provide meaningfully improved data for predictive damage models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M.A. Meyers, and C.T. Aimone: Progr. Mater. Sci., 1983, vol. 28, pp. 1–96

    Article  CAS  Google Scholar 

  2. J.M. Rivas, A.K. Zurek, W.R. Thissell, D.L. Tonks, and R.S. Hixson: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 845–51

    Article  CAS  Google Scholar 

  3. W.R. Thissell, A.K. Zurek, D.L. Tonks, and R.S. Hixson: AIP Conf. Proc., Ammerican Institute of Physics, Melville, NY 11747, 2000, vol. 505, pp. 451–54

  4. W.R. Thissell, D.L. Tonks, D. Schwartz, and J. House: AIP Conf. Proc., 2004, vol. 706, pp. 495–98

    Article  Google Scholar 

  5. A. Molinari, and T.W. Wright: J. Mech. Phys. Sol., 2005, vol. 53, pp. 1476–1504

    Article  Google Scholar 

  6. P. Chevrier, and J.R. Klepaczko: Eng. Fract. Mech., 1999, vol. 63, pp. 273–94

    Article  Google Scholar 

  7. R.W. Minich, J.U. Cazamias, M. Kumar, and A.J. Schwartz: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2663–73

    Article  CAS  Google Scholar 

  8. X. Chen, J.R. Asay, and S.K. Dwivedi: J. Appl. Phys., 2006, vol. 99, pp. 023528-1–023528-13

    Google Scholar 

  9. R. Cortes: Int. J. Solids Struct., 1992, vol. 29, pp. 1637–45

    Article  Google Scholar 

  10. G.T. Gray III, J.C. Huang: Mater. Sci. Eng., 1991, vol. A145, pp. 21–35

    Google Scholar 

  11. E.T. Seppala, J. Belak, and R.E. Rudd: Phys. Rev. B, 2004, vol. 69, pp. 134101-1–134101-19

    Article  Google Scholar 

  12. F.L. Addessio, and J.N. Johnson: J. Appl. Phys., 1993, vol. 74, pp. 1640–48

    Article  CAS  Google Scholar 

  13. L. Campagne, L. Daridon, and S. Ahzi: Mech. Mater., 2005, vol. 37, pp. 869–86

    Article  Google Scholar 

  14. J.P. Bandstra, D.A. Koss, A.B. Geltmacher, P. Matic, and R.K. Everett: Mater. Sci. Eng., 2004, vol. A366, pp. 269–81

    CAS  Google Scholar 

  15. S.-R. Chen, and G.T. Gray III: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2994–3006

    Article  CAS  Google Scholar 

  16. M.V. Kral, M.A. Mangan, G. Spanos, and R.O. Rosenberg: Mater. Characterization, 2000, vol. 45, pp. 17–23

    Article  CAS  Google Scholar 

  17. M.V. Kral, and G. Spanos: Acta Mater., 1999, vol. 47, pp. 711–24

    Article  CAS  Google Scholar 

  18. J. Alkemper, and P. Voorhees: Acta Mater., 2001, vol. 49, pp. 897–902

    Article  CAS  Google Scholar 

  19. A.C. Lund, and P. Voorhees: Phil. Mag., 2003, vol. 83, pp. 1719–33

    Article  CAS  Google Scholar 

  20. A.J. Kubis, G.J. Shiflet, D.N. Dunn, and R. Hull: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1935–43

    Article  CAS  Google Scholar 

  21. H. Agarwal, A.M. Gokhale, S. Graham, and M.F. Horstemeyer: Metall. Mater. Trans., 2002, vol. 33A, pp. 2599–2606

    Article  CAS  Google Scholar 

  22. R.J. Larsen, and B.L. Adams: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1991–98

    Article  CAS  Google Scholar 

  23. K.M. Dobrich, C. Rau, and C.E. Krill: Metall. Mater. Trans., 2004, vol. 35A, pp. 1953–61

    Article  Google Scholar 

  24. H. Singh, and A.M. Gokhale: Mater. Characterization, 2005, vol. 54, pp. 21–29

    Article  CAS  Google Scholar 

  25. D.M. Saylor, A. Morawiec, and G.S. Rohrer: Acta Mater., 2003, vol. 51, pp. 3663–74

    Article  CAS  Google Scholar 

  26. R.K. Everett, K.E. Simmonds, and A.B. Geltmacher: Scripta Mater., 2001, vol. 44, pp. 165–69

    Article  CAS  Google Scholar 

  27. L.B. Wang, J.D. Frost, G.Z. Voyiadjis, and T.P. Harman: Mech. Mater., 2003, vol. 35, pp. 777–90

    Article  Google Scholar 

  28. J.J. Gammage, D.S. Wilkinson, J.D. Embury, and E. Maire: Phil. Mag., 2005, vol. 85, pp. 3191–206

    Article  CAS  Google Scholar 

  29. S.I. Wright, G.T. Gray III, and A.D. Rollett: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1025–31

    Article  CAS  Google Scholar 

  30. M.A. Meyers: Dynamic Behavior of Materials, 1st ed., John Wiley & Sons, New York, NY, 1994, pp. 523–46

    Google Scholar 

  31. A.M. Kelly, S.R. Bingert, and R.D. Reiswig: Microstruct. Sci., 1998, vol. 23, pp. 185–95

    Google Scholar 

  32. J.R. Kremer, D.N. Mastronarde, and J.R. McIntosh: J. Struct. Biol., 1996, vol. 116, pp. 71–76

    Article  CAS  Google Scholar 

  33. M. Piper, and M.D. Galloy: Introduction to IDL Software, Research Systems, Inc., Boulder, CO, 2004, pp. 1–214

    Google Scholar 

  34. X.Y. Wu, K.T. Ramesh, and T.W. Wright: J. Mech. Phys. Solids, vol. 51, pp. 1–26

Download references

Acknowledgments

Los Alamos National Laboratory (LANL), an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the United States Department of Energy (DOE) under Contract No. DE-AC52-06NA25396. The authors thank A.K. Zurek and C.P. Trujillo of the LANL, and W.R. Thissell, formerly of the LANL, for their independent spall research that produced the tantalum sample characterized in this study. T. Slankard from the U. of California at Davis, Institute for Data Analysis and Visualization (IDAV) and the Materials Design Institute at the LANL, is acknowledged for his insights in image segmentation and feature quantification. The baseline 3-D volume grid program, along with appreciated guidance, was supplied by D. Rowenhorst of the Naval Research Laboratory (NRL), while G. Spanos of the NRL is thanked for his encouragement to pursue this work. This work was partially sponsored by the Joint DoD/DOE Munitions Technology Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Bingert.

Additional information

Manuscript submitted June 23, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bingert, J.F., Henrie, B.L. & Worthington, D. Three-Dimensional Characterization of Incipiently Spalled Tantalum. Metall Mater Trans A 38, 1712–1721 (2007). https://doi.org/10.1007/s11661-007-9216-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9216-4

Keywords

Navigation