Skip to main content
Log in

Quantitative description of damage evolution in ductile fracture of tantalum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Dynamic ductile fracture has been studied through incipient spallation experiments on two grades of tantalum. A commercially pure Ta material incipiently spalled at 252 m/s, a highly pure Ta material incipiently spalled at 246 m/s, and a highly pure Ta material preshocked at 250 m/s and incipiently spalled at 246 m/s were used. Microstructural parameters of the fracture process such as porosity, void-size distributions, and void aspect ratios have been quantified using image analysis and optical profilometry techniques. The commercially pure Ta, the highly pure Ta preshocked prior to spall, and the annealed high-purity Ta exhibited 27, 16.6, and 5.5 pct porosity, respectively. The void-size distribution observed in all three tests was adequately represented by either a log-normal or a linear combination of a log-normal and a Weibull distribution function. At least 80 pct of the aspect ratios observed in all three tests were adequately represented by a gamma distribution function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. LeRoy, J.D. Embury, G. Edwards, and M.F. Ashby: Acta Metall., 1981, vol. 29, pp. 1509–22.

    Article  CAS  Google Scholar 

  2. H.G.F. Wilsdorf: Mater. Sci. Eng., 1983, vol. 59, pp. 1–39.

    Article  CAS  Google Scholar 

  3. D.R. Curran, L. Seaman, and D.A. Shockey: Phys. Rep., 1987, vol. 147, pp. 253–388.

    Article  CAS  Google Scholar 

  4. P.F. Thomason: Ductile Fracture of Metals, Pergamon Press, Oxford, United Kingdom, 1990.

    Google Scholar 

  5. A.S. Argon, J. Im, and R. Safoglu: Metall. Trans. A, 1975, vol. 6A, pp. 825–37.

    CAS  Google Scholar 

  6. A.S. Argon and J. Im: Metall. Trans. A, 1975, vol. 6A, pp. 839–51.

    CAS  Google Scholar 

  7. S. Christy, H.R. Pak, and M.A. Meyers: Metallurgical Applications of Shock-Wave and High Strain-Rate Phenomena, L.E. Murr, K.P. Staudhammer, and M.A. Meyers, eds., Marcel Dekker, New York, NY, 1986, pp. 835–63.

    Google Scholar 

  8. A.K. Zurek and M.A. Meyers: High-Pressure Shock Compression of Solids II, L. Davison, D.E. Grady, and M. Shahinpoor, eds., Springer-Verlag, New York, NY, 1996, pp. 25–70.

    Google Scholar 

  9. L. Seaman, D.R. Curran, and D.A. Shockey: J. Appl. Phys., 1976, vol. 47, pp. 4814–26.

    Article  CAS  Google Scholar 

  10. J.N. Johnson: J. Appl. Phys., 1981, vol. 52, pp. 2812–25.

    Article  Google Scholar 

  11. J.N. Johnson and F.L. Addessio: J. Appl. Phys., 1988, vol. 64, pp. 6699–6712.

    Article  CAS  Google Scholar 

  12. A.L. Gurson: J. Eng. Mater. Tech., 1977, vol. 99, pp. 2–15.

    Google Scholar 

  13. A. Needleman and V. Tvergaard: Eng. Fract. Mech., 1991, vol. 38, pp. 157–73.

    Article  Google Scholar 

  14. P.F. Thomason: Fat. Fract. Eng. Mater. Struct., 1998, vol. 21, pp. 1105–22.

    Article  CAS  Google Scholar 

  15. M.A. Meyers: Dynamic Behavior of Materials, John Wiley & Sons, Inc., New York, NY, 1994.

    Google Scholar 

  16. A.K. Zurek, J.N. Johnson, and C.E. Frantz: J. Phys., 1988, vol. 49, pp. 269–76.

    Google Scholar 

  17. D.R. Curran, L. Seaman, and D.A. Shockey: Phys. Today, 1977, pp. 46–55.

  18. L. Seaman, D.R. Curran, and R.C. Crewdson: J. Appl. Phys., 1978, vol. 49, pp. 5221–29.

    Article  CAS  Google Scholar 

  19. M. Lacomme, A. Froger, J.P. Ansart, and R. Dormeval: J. Phys., 1988, vol. 49, pp. 183–90.

    Google Scholar 

  20. A.K. Zurek, W.R. Thissell, J.N. Johnson, D.L. Tonks, and R.S. Hixson: J. Mater. Processing Technol., 1996, vol. 60, pp. 261–67.

    Article  Google Scholar 

  21. D.L. Tonks: J. Phys. IV, 1994, vol. 4, pp. 665–70.

    Google Scholar 

  22. D.L. Tonks, A.K. Zurek, and W.R. Thissell: Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena, L.E. Murr, K.P. Staudhammer, and M.A. Meyers, eds., Elsevier Science, Amsterdam, 1995, pp. 171–78.

    Google Scholar 

  23. D.L. Tonks, W.R. Thissell, A.K. Zurek, and R.S. Hixson: J. Phys. IV, 1997, vol. 7, pp. 841–46.

    Google Scholar 

  24. J.N. Johnson, R.S. Hixson, D.L. Tonks, and A.K. Zurek: Shock Compression of Condensed Matter, S.C. Schmidt and W.C. Tao, eds., AIP, New York, NY, 1995, pp. 523–26.

    Google Scholar 

  25. J.M. Rivas, A.K. Zurek, W.R. Thissell, D.L. Tonks, and R.S. Hixson: Electron Microscopy 1998, Proc. 14th Int. Congr. on Electron Microscopy, H.A. Calderon Benavides and M. Jose Yacaman, eds., Institute of Physics Publishing, Bristol, 1998, vol. 1, pp. 169–70.

    Google Scholar 

  26. G.T. Gray III and K.S. Vecchio: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2555–64.

    CAS  Google Scholar 

  27. S.R. Chen and G.T. Gray III: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2994–3006.

    CAS  Google Scholar 

  28. G.T. Gray III: High Pressure Shock Compression of Solids, J.R. Asay and M. Shahinpoor, eds., Springer-Verlag, New York, NY, 1993, pp. 187–215.

    Google Scholar 

  29. L.M. Barker and R.E. Hollenbach: J. Appl. Phys., 1972, vol. 43, pp. 4669–75.

    Article  Google Scholar 

  30. A.M. Kelly, S.R. Bingert, and R.D. Reiswig: Microstr. Sci., 1996, vol. 23, pp. 185–95.

    CAS  Google Scholar 

  31. P.J. Caber: Appl. Optics, 1993, vol. 32, pp. 3438–41.

    Article  Google Scholar 

  32. A.K. Zurek, W.R. Thissell, D.L. Tonks, R. Hixson, and F. Addessio: J. Phys. IV, 1997, vol. 7, pp. 903–08.

    Google Scholar 

  33. W.R. Thissell, A.K. Zurek, D.L. Tonks, and R.S. Hixson: 21st Int. Symp. on Shock Waves, Great Keppel Island, Australia, 1997.

  34. B. Cavalieri: Geometria Planara, 1653.

  35. G.J. Hahn and S.S. Shapiro: Statistical Models in Engineering, John Wiley & Sons, Inc., New York, NY, 1994.

    Google Scholar 

  36. W.R. Thissell, A.K. Zurek, J.M. Rivas, D.L. Tonks, and R.S. Hixson: Microstructural Science, Vol. 26, E. Abramovici, D.O. Northwood, and M.T. Shehata, eds., ASM International, Materials Park, OH, 1999, pp. 497–505.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation given in the symposium entitled “Dynamic Behavior of Materials - Part II,” held during the 1998 Fall TMS/ASM Meeting and Materials Week, October 11–15, 1998, in Rosemont, Illinois, under the auspices of the TMS Mechanical Metallurgy and the ASM Flow and Fracture Committees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivas, J.M., Zurek, A.K., Thissell, W.R. et al. Quantitative description of damage evolution in ductile fracture of tantalum. Metall Mater Trans A 31, 845–851 (2000). https://doi.org/10.1007/s11661-000-0028-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0028-z

Keywords

Navigation