Skip to main content
Log in

Kinetics of Nitriding Fe-2 Wt Pct V Alloy: Mobile and Immobile Excess Nitrogen

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The kinetics of nitriding of Fe-2 wt pct V alloy was investigated as a function of time and temperature by exposing the alloy to a gas mixture of ammonia and hydrogen at constant nitriding potential 0.103 atm−1/2 at different nitriding temperatures, 520 °C, 550 °C, 580 °C, and 600 °C, for times up to 10, 10, 10, and 7 hours, respectively. The nitrided zone contains finely dispersed small vanadium-nitride precipitates in ferrite (α-Fe) grains. The nitrogen content within the nitrided zone is larger than expected on the basis of the vanadium content and the solubility of nitrogen in (stress-free) ferrite: excess nitrogen occurs. A model was developed that adequately predicts the evolution of the nitrogen concentration-depth profile of the nitrided layer. The model distinguishes quantitatively between the effects of mobile and immobile excess nitrogen, where immobile excess nitrogen is nitrogen adsorbed at the nitride platelet/matrix interface and mobile excess nitrogen is nitrogen dissolved in the matrix. The model has, as important (fit) parameters, the composition of the precipitated vanadium nitride, the effective diffusivity of nitrogen in the ferrite matrix surrounding the precipitates, and the solubility product of dissolved vanadium and dissolved nitrogen in the ferrite matrix. Analysis of the concentration-depth profile data at various nitriding temperatures exhibited the effect of the nitriding temperature on the amounts of mobile and immobile excess nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E.J. Mittemeijer, M.A.J. Somers: Surface Eng., 1997, vol. 13, p. 483

    CAS  Google Scholar 

  2. S.S. Hosmani, R.E. Schacherl, E.J. Mittemeijer: Acta Mater., 2006, vol. 54, p. 2783

    Article  CAS  Google Scholar 

  3. R.E. Schacherl, P.C.J. Graat, E.J. Mittemeijer: Metall. Mater. Trans. A, 2004, vol. 35A, p. 3387

    Article  CAS  Google Scholar 

  4. M.H. Biglari, C.M. Brakman, E.J. Mittemeijer, S. van der Zwaag: Phil. Mag. A, 1995, vol. 72, p. 931

    Article  CAS  Google Scholar 

  5. S.S. Hosmani, R.E. Schacherl, E.J. Mittemeijer: Acta Mater., 2005, vol. 53, p. 2069

    CAS  Google Scholar 

  6. P.M. Hekker, H.C.F. Rozendaal, E.J. Mittemeijer: J. Mater. Sci., 1985, vol. 20, p. 718

    Article  CAS  Google Scholar 

  7. B.J. Lightfoot, D.H. Jack: Proc. Conf. on Heat Treatment 1973, The Metals Society, London, 1975, pp. 59–65

    Google Scholar 

  8. C. Alves, J. de Anchieta Rodrigues, A. Eduardo Martinelli: Mater. Sci. Eng., 2000, vol. 279, p. 10

    Article  Google Scholar 

  9. V.A. Philipps, A.U. Seybolt: Trans. TMS-AIME, 1968, vol. 242, p. 2415

    Google Scholar 

  10. M. Pope, P. Grieveson, K.H. Jack: Scand. J. Metall., 1973, vol. 2, p. 29.

    CAS  Google Scholar 

  11. W.D. Welch, S.H. Carpenter: Acta Metall., 1973, vol. 21, p. 1169.

    Article  CAS  Google Scholar 

  12. A. Krawitz: Scripta Metall., 1977, vol. 11, p. 117

    Article  CAS  Google Scholar 

  13. M.M. Yang, A.D. Krawitz: Metall. Trans. A, 1984, vol. 15A, p. 1545

    CAS  Google Scholar 

  14. T.C. Bor, A.T.W. Kempen, F.D. Tichelaar, E.J. Mittemeijer, E. van der Giessen: Phil. Mag. A, 2002, vol. 82, p. 971

    CAS  Google Scholar 

  15. M.E. Djeghlal, L. Barrallier: Ann. Chim. Sci. Mater., 2003, vol. 28, p. 43

    Article  CAS  Google Scholar 

  16. M. Gouné, T. Belmonte, A. Redjaimia, P. Weisbecker, J.M. Fiorani, H. Michel: Mater. Sci. Eng. A, 2003, vol. 351, p. 23

    Article  Google Scholar 

  17. H.H. Podgurski, F.N. Davis: Acta Metall., 1981, vol. 29, p. 1

    Article  CAS  Google Scholar 

  18. M.A.J. Somers, R.M. Lankreijer, E.J. Mittemeijer: Phil. Mag. A, 1989, vol. 59, p. 353

    Article  CAS  Google Scholar 

  19. M.H. Biglari, C.M. Brakman, E.J. Mittemeijer: Phil. Mag. A, 1995, vol. 72, p. 1281

    Article  CAS  Google Scholar 

  20. M.H. Biglari, C.M. Brakman, M.A.J. Somers, W.G. Sloof, E.J. Mittemeijer: Z. Metallkd., 1993, vol. 84, p. 124

    CAS  Google Scholar 

  21. E.J. Mittemeijer, J.T. Slycke: Surf. Eng., 1996, vol. 12, p. 152

    CAS  Google Scholar 

  22. J.C. Grossman, A. Mizel, M. Côté, M.L. Cohen, S.G. Louie: Phys. Rev. B, 1999, vol. 60, p. 6343

    Article  CAS  Google Scholar 

  23. A. Engström, L. Höglund, J. Ågren: Metall. Mater. Trans. A, 1994, vol. 25A, p. 1127.

    Article  Google Scholar 

  24. C.M. Garzón, A.P. Tschiptschin: Mater. Sci. Technol., 2004, vol. 20, p. 915

    Article  Google Scholar 

  25. J.L. Pouchau, F. Pichoir: La Recherche Aérospatial, 1984, vol. 3, pp. 167–92

    Google Scholar 

  26. W.B. Pearson: A Handbook of Lattice Spacings and Structures of Metals, Pergamon Press, London, 1968, vol. 2

    Google Scholar 

  27. J.D. Fast, M.B. Verrijp: J. Iron Steel Inst., 1954, vol. 126, p. 24

    Google Scholar 

  28. J.D. Kamminga, T.P.C. Klaver, K. Nakata, B.J. Thijsse, G.C.A.M. Janssen: J. Computer-Aided Mater. Design, 2003, vol. 10, p. 1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Hosmani.

Additional information

Manuscript submitted March 20, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosmani, S.S., Schacherl, R.E. & Mittemeijer, E.J. Kinetics of Nitriding Fe-2 Wt Pct V Alloy: Mobile and Immobile Excess Nitrogen. Metall Mater Trans A 38, 7–16 (2007). https://doi.org/10.1007/s11661-006-9046-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-9046-9

Keywords

Navigation