Skip to main content
Log in

Fracture behavior of niobium by hydrogenation and its application for fine powder fabrication

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fracture behavior of pure niobium (Nb) by several hydrogenation procedures has been investigated to elucidate the fundamental mechanisms of hydrogen pulverization, which can then be used to produce fine Nb powders with high purity. Concentric cracks and microcracks were introduced in recrystallized Nb specimens, leading to pulverization, when they absorb hydrogen enough to form a large volume of the face-centered orthorhombic β-NbH phase. This hydride phase exhibits anisotropic expansion of Nb lattice and embrittlement. Thus, the fracture of Nb plates occurs in the following sequence: hydrogen absorption, the formation of the ordered hydride phase, strain generation arising from the phase transformation, and crack nucleation and propagation. The authors also show that Nb powders less than 1 µm were prepared by hydrogenation and ball-milling at a temperature below 203 K, in which hydrogen was removed by dehydrogenation at above 724 K. Thus, fine and contamination-free Nb powders can be effectively fabricated by using hydrogenation, ball-milling, and dehydrogenation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kukli, M. Ritala, and M. Leskela: J. Electrochem. Soc., 2001, vol. 148 (2), pp. F35–41.

    Article  CAS  Google Scholar 

  2. L.I. Skatkov and P.G. Cheremsloy: Powder Metall., 2000, vol. 43 (2), pp. 182–84.

    Article  CAS  Google Scholar 

  3. K. Kovacs, G. Kiss, M. Stenzel, and H. Zillgen: J. Electrochem. Soc., 2003, vol. 150 (8), pp. B361–66.

    Article  CAS  Google Scholar 

  4. Y.M. Li and L. Young: J. Electrochem. Soc., 2000, vol. 147, pp. 1344–48.

    Article  CAS  Google Scholar 

  5. N. Eliaz, D. Eliezer, and O.L. Olson: Mater. Sci. Eng. A, 2000, vol. A289, pp. 41–53.

    CAS  Google Scholar 

  6. O.N. Senkov and F.H. Froes: Int. J. Hydrogen Energy, 1999, vol. 24, pp. 565–76.

    Article  CAS  Google Scholar 

  7. F.H. Froes, O.N. Senkov, and J.I. Qazi: Int. Mater. Rev., 2004, vol. 49 (3–4), pp. 227–45.

    Article  CAS  Google Scholar 

  8. I.R. Harris and P.J. McGuiness: J. Less-Common Met., 1991, vol. 172–174, pp. 1273–80.

    Article  Google Scholar 

  9. R.E. Smallman, I.R. Harris, and M.A. Duggan: J. Mater. Proc. Tech., 1997, vol. 63, pp. 18–29.

    Article  Google Scholar 

  10. J.J.G. Willems and K.H.J. Buschow: J. Less-Common Met., 1987, vol. 129, pp. 13–30.

    Article  CAS  Google Scholar 

  11. S. Semboshi, N. Masahashi, and S. Hanada: Acta Mater., 2001, vol. 49, pp. 927–35.

    Article  CAS  Google Scholar 

  12. S. Semboshi, N. Masahashi, and S. Hanada: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 685–90.

    Article  CAS  Google Scholar 

  13. S. Semboshi, N. Masahashi, and S. Hanada: J. Alloy Compd., 2003, vol. 359, pp. 236–73.

    Article  CAS  Google Scholar 

  14. X.G. Li, A. Chiba, K. Ohsaki, Y. Morita, and M. Uda: J. Alloy Compound., 1996, vol. 238, pp. 202–09.

    Article  CAS  Google Scholar 

  15. S. Semboshi, H. Hosoda, and S. Hanada: J. Jpn. Inst. Met., 1997, vol. 61 (10), pp. 1132–38.

    CAS  Google Scholar 

  16. S. Semboshi, T. Tabaru, H. Hosoda, and S. Hanada: Intermetallics, 1996, vol. 6, pp. 61–69.

    Article  Google Scholar 

  17. M. Kosuge, H. Hosoda, and S. Hanada: J. Jpn. Inst. Metals, 1998, vol. 62 (7), pp. 681–89.

    CAS  Google Scholar 

  18. I. Park, T. Okabe, and Y. Waseda: Mater. Trans., 2001, vol. 42, pp. 850–55.

    Article  CAS  Google Scholar 

  19. M. Takizane, T. Fukami, and T. Inaba: ISIJ Int., 1991, vol. 31, pp. 1088–92.

    Google Scholar 

  20. R.J. Welter and W.T. Chandler: Trans. AIME, 1965, vol. 233, pp. 762–65.

    Google Scholar 

  21. H. Asano and Hirabayashi: Z. Phys. Chem., vol. 114, pp. 1–19.

  22. W.M. Albecht, W.D. Goode, and M.W. Mallett, J. Electrochem. Soc., 1959, vol. 106 (11), pp. 981–86.

    Article  Google Scholar 

  23. V.G. Vaks and V.I. Zinenko: J. Phys. Condens. Matter, 1989, vol. 1, pp. 9085–100.

    Article  CAS  Google Scholar 

  24. A. Zielinski: J. Mater. Proc. Tech., 2001, vol. 109, pp. 206–14.

    Article  CAS  Google Scholar 

  25. M.M. Farahani, F. Attia, and K. Salama: Mater. Trans. A, 1981, vol. 12A, pp. 631–38.

    Google Scholar 

  26. M.C.C. Lin and K. Salama: Mater. Trans. A, 1997, vol. 28A, pp. 2059–65.

    Article  Google Scholar 

  27. Y.B. Park, D.N. Lee, and G. Gottstein: Acta Mater., 1998, vol. 46 (10), pp. 3371–79.

    Article  CAS  Google Scholar 

  28. J.B. Nelson and D.P. Riley: Proc. Phys. Soc, 1945, vol. 57, pp. 160–62.

    Article  CAS  Google Scholar 

  29. P. Bowen, J. Sheng, and N. Jongen: Powder Tech., 2002, vol. 128 (2–3), pp. 256–61.

    Article  CAS  Google Scholar 

  30. G. Brauer and B. Hermann: Z. Anorg. Chem, 1953, vol. 274, pp. 11–23.

    Article  CAS  Google Scholar 

  31. G.T. Hahn, A. Gilbert, and R.I. Jaffee: in Refractory Metal Alloys, edited by I. Machlin, R.T. Begley, and E.D. Weisert, Metallurgical Society of AIME. Refractory Metals Committee, Washington DC, 1968, pp. 23–63.

    Google Scholar 

  32. W. Pesch, T. Schober, and H. Wenzl: Scr. Metall, 1978, vol. 12, pp. 815–20.

    Article  CAS  Google Scholar 

  33. T. Morita and H. Ino: J. Phys. Soc. Jpn., 1979, vol. 46 (6), pp. 1776–84.

    Article  Google Scholar 

  34. R. Balasubramaniam: Acta Mater., 1993, vol. 41 (12), pp. 3341–49.

    Article  CAS  Google Scholar 

  35. H.K. Birnbaum, M.L. Grossbeck, and M. Amono: J. Less-Common Met., 1976, vol. 49, pp. 357–70.

    Article  CAS  Google Scholar 

  36. S. Gahr, B.J. Makenas, and H.K. Birnbaum: Acta Mater., 1980, vol. 28, pp. 1207–13.

    Article  CAS  Google Scholar 

  37. H. Matsui, N. Yoshikawa, and M. Koiwa: Acta Mater., 1987, vol. 35 (2), pp. 413–26.

    Article  CAS  Google Scholar 

  38. T. Plackowski, N.I. Sorokina, and D. Wlosewicz: J. Phys. Condens. Matter, 1998, vol. 10, pp. 1259–66.

    Article  CAS  Google Scholar 

  39. J.M. Welter and F. Schondube: J. Phys. F: Met. Phys, 1983, vol. 13, pp. 529–44.

    Article  CAS  Google Scholar 

  40. B.J. Makenas and H.K. Birnbaum: Acta Metall., 1982, vol. 30, pp. 469–81.

    Article  CAS  Google Scholar 

  41. H. Sugimoto and Y. Fukai: Phys. Rev. B: Condens. Matter Mater. Phys., 1980, vol. 22 (2), pp. 670–80.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semboshi, S., Konno, T.J., Masahashi, N. et al. Fracture behavior of niobium by hydrogenation and its application for fine powder fabrication. Metall Mater Trans A 37, 1301–1309 (2006). https://doi.org/10.1007/s11661-006-1082-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-1082-y

Keywords

Navigation