Skip to main content
Log in

Fatigue crack growth behavior in niobium-hydrogen alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Near-threshold fatigue crack growth behavior has been investigated in niobium-hydrogen alloys. Compact tension specimens (CTS) with three hydrogen conditions are used: hydrogen-free, hydrogen in solid solution, and hydride alloy. The specimens are fatigued at a temperature of 296 K and load ratios of 0.05, 0.4, and 0.75. The results at load ratios of 0.05 and 0.4 show that the threshold stress intensity range (ΔK th ) decreases as hydrogen is added to niobium. It reaches a minimum at the critical hydrogen concentration (C cr ), where maximum embrittlement occurs. The critical hydrogen concentration is approximately equal to the solubility limit of hydrogen in niobium. As the hydrogen concentration exceeds C cr , ΔK th increases slowly as more hydrogen is added to the specimen. At load ratio 0.75, ΔK th decreases continuously as the hydrogen concentration is increased. The results provide evidence that two mechanisms are responsible for fatigue crack growth behavior in niobium-hydrogen alloys. First, embrittlement is retarded by hydride transformation-induced and plasticity-induced crack closures. Second, embrittlement is enhanced by the presence of hydrogen and hydride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

solubility limit, ppm wt

C 0 :

hydrogen concentration, ppm wt

C cr :

critical concentration at maximum embrittlement, ppm wt

da/dN :

fatigue crack growth rate, m/cycle

ΔK :

stress intensity range, MN/m3/2

ΔK eff :

effective stress intensity range, MN/m3/2

ΔK eff,th :

effective threshold stress intensity range, MN/m3/2

ΔK th :

threshold stress intensity range, MN/m3/2

K th )min :

minimum threshold stress intensity range, MN/m3/2

R :

load ratio

References

  1. I. Machlin, R.T. Begley, and E.D. Weisert: Proc. AIME Symp. on Refractory Metal Alloys, Metallurgy and Technology, Plenum Press, New York, NY, 1968, p. 197.

    Google Scholar 

  2. M.M. Farahani, F. Attia, and K. Salama: Metall. Trans. A, 1981, vol. 12A, pp. 631–38.

    Google Scholar 

  3. S. Gahr, M.L. Grossbeck, and H.K. Birnbaum: Acta Metall., 1977, vol. 25, pp. 125–34.

    Article  CAS  Google Scholar 

  4. D.G. Westlake and S.T. Ockers: Metall. Trans. A, 1975, vol. 6A, pp. 399–402.

    CAS  Google Scholar 

  5. L.W. Berger, W.S. Hyler, and R.I. Jaffee: Trans. TMS-AIME, 1958, vol. 212, pp. 41–45.

    CAS  Google Scholar 

  6. D.W. Chung and N.S. Stoloff: Metall. Trans. A, 1978, vol. 9A, pp. 71–78.

    CAS  Google Scholar 

  7. C.V. Owen, W.A. Spitzig, and O. Buck: Metall. Trans. A, 1987, vol. 18A, pp. 1593–1601.

    CAS  Google Scholar 

  8. E. Elber: Eng. Fract. Mech., 1970, vol. 2, pp. 37–45.

    Article  Google Scholar 

  9. R.O. Ritchie: Proc. 2nd Int. Conf. on Fatigue and Fatigue Thresholds, C.J. Beevers, ed., Engineering Materials Advisory Services, West Midlands, England, 1984, pp. 1833–63.

    Google Scholar 

  10. D. Tayor: Int. J. Fatigue, 1988, vol. 10, pp. 67–79.

    Article  Google Scholar 

  11. H. Kobayashi: Proc. 6th Int. Conf. on Fracture, S.R. Valluri, D.M.R. Taplin, P. Rama Rao, and J.F. Knott, eds., Pergamon Press, Oxford, England, 1984, pp. 2481–88.

    Google Scholar 

  12. T.T. Shih and R.P. Wei: Eng. Fract. Mech., 1974, vol. 6, pp. 19–32.

    Article  CAS  Google Scholar 

  13. R.D. Pendse and R.O. Ritchie: Metall. Trans. A, 1985, vol. 16A, pp. 1491–1501.

    CAS  Google Scholar 

  14. J.A. Todd, P. Li, G. Liu, and V. Ramam: Scrip. Metal., 1988, vol. 22, pp. 745–50.

    Article  CAS  Google Scholar 

  15. R.L. Eadie and F. Ellyin: Scrip. Metal., 1989, vol. 23, pp. 585–92.

    Article  CAS  Google Scholar 

  16. E. Smith: Int. J. Pressure Vessels Piping, 1994, vol. 60, pp. 159–65.

    Article  CAS  Google Scholar 

  17. E. Smith: Int. J. Pressure Vessels Piping, 1994, vol. 61, pp. 1–7.

    Article  Google Scholar 

  18. J.B. Bai, C. Prioul, and D. Francois: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1185–97.

    CAS  Google Scholar 

  19. F.H. Horn and W.T. Ziegler: J. Amer. Chem. Soc., 1947, vol. 69, pp. 2762–69.

    Article  CAS  Google Scholar 

  20. D.G. Westlake: Trans. TMS-AIME, 1969, vol. 245, pp. 287–92.

    CAS  Google Scholar 

  21. Elemental and Interplanar Spacing Index for Phase Identification by Electron or X-ray Diffraction, U.S. Department of Commerce, NIST, and JCPDS, Swarthmore, PA, 1989, p. 674.

  22. R. Bazil, G.W. Simmons, and R.P. Wei: J. Eng. Mater. Technol., 1979, vol. 101, pp. 199–204.

    Article  Google Scholar 

  23. M. Kikukawa, M. Jono, and K. Tanaka: Proc. 2nd Int. Conf. on the Mechanical Behavior of Materials, N. Promisel and V. Weiss, eds., ASM, Metals Park, OH, 1976, pp. 716–20.

    Google Scholar 

  24. D.S. Shih, I.M. Robertson, and H.K. Birnbaum: Acta Metall., 1988, vol. 36, pp. 111–24.

    Article  CAS  Google Scholar 

  25. J.K. Tien, A.W. Thompson, and R.J. Richards: Metall. Trans. A, 1976, vol. 7A, pp. 821–29.

    CAS  Google Scholar 

  26. H.K. Birnbaum, M. Grossbeck, and S. Gahr: Proc. 1st Int. Conf. on the Effects of Hydrogen on Materials Properties and Selection and Structural Design, I.M. Bernstein and A.W. Thompson, eds., ASM, Metals Park, OH, 1973, pp. 303–23.

    Google Scholar 

  27. S. Gahr, B.J. Makenas, and H.K. Birnbaum: Acta Metall., 1980, vol. 28, pp. 1207–13.

    Article  CAS  Google Scholar 

  28. L.A. Simpson and M.P. Puls: Metall. Trans. A, 1979, vol. 10A, pp. 1093–1105.

    CAS  Google Scholar 

  29. C. Weatherly: Acta Metall., 1981, vol. 29, pp. 501–12.

    Article  CAS  Google Scholar 

  30. M.P. Puls: Metall. Trans. A, 1988, vol. 19A, pp. 1507–22.

    CAS  Google Scholar 

  31. M.P. Puls, L.A. Simpson, and R. Dutton: Fracture Problems and Solutions in the Energy Industry, L.A. Simpson, ed., Pergamon Press, Oxford, England, 1982, pp. 13–25.

    Google Scholar 

  32. T. Schober and H. Wenzl: in Hydrogen in Metal II, G. Alefeld and J. Volkl, eds., Springer-Verlag, New York, NY, 1978, pp. 11–71.

    Google Scholar 

  33. B.J. Makenas and H.K. Birnbaum: Acta Metall., 1980, vol. 28, pp. 979–88.

    Article  CAS  Google Scholar 

  34. R.M. MeMeeking and A.G. Evans: J. Amer. Ceram. Soc., 1982, vol. 65, pp. 242–46.

    Article  Google Scholar 

  35. J.C. Newmann: ASTM STP 748, ASTM, Philadelphia, PA, 1976, pp. 53–84.

    Google Scholar 

  36. B. Budiansky and J.W. Hutchinson: J. Appl. Mech., 1978, vol. 45, pp. 267–76.

    Google Scholar 

  37. T.C. Lindley and C.E. Richards: Mater. Sci. E., 1974, vol. 14, pp. 281–93.

    Article  CAS  Google Scholar 

  38. M.B. Cortie and G.G. Garrett: Metall. Trans. A, 1988, vol. 19A, pp. 2979–87.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, M.CC., Salama, K. Fatigue crack growth behavior in niobium-hydrogen alloys. Metall Mater Trans A 28, 2059–2065 (1997). https://doi.org/10.1007/s11661-997-0162-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0162-y

Keywords

Navigation