Skip to main content
Log in

Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Two Fe-0.2C-1.55Mn-1.5Si (in wt pct) steels, with and without the addition of 0.039Nb (in wt pct), were studied using laboratory rolling-mill simulations of controlled thermomechanical processing. The microstructures of all samples were characterized by optical metallography, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The microstructural behavior of phases under applied strain was studied using a heat-tinting technique. Despite the similarity in the microstructures of the two steels (equal amounts of polygonal ferrite, carbide-free bainite, and retained austenite), the mechanical properties were different. The mechanical properties of these transformation-induced-plasticity (TRIP) steels depended not only on the individual behavior of all these phases, but also on the interaction between the phases during deformation. The polygonal ferrite and bainite of the C-Mn-Si steel contributed to the elongation more than these phases in the C-Mn-Si-Nb-steel. The stability of retained austenite depends on its location within the microstructure, the morphology of the bainite, and its interaction with other phases during straining. Granular bainite was the bainite morphology that provided the optimum stability of the retained austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Sakuma, O. Matsumura, and H. Takechi: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 489–98.

    CAS  Google Scholar 

  2. S.K. Liu and J. Zhang: Metall. Mater. Trans. A, 1990, vol. 21A, pp. 1517–25.

    CAS  Google Scholar 

  3. V.F. Zackay, E.R. Parker, D. Fahr, and R. Busch: Trans. ASM, 1967, vol. 60, pp. 252–59.

    CAS  Google Scholar 

  4. W.W. Gerberich, P.L. Hemmings, M.D. Merz, and V.F. Zackay: Trans. Techn. Notes, 1968, vol. 61, pp. 843–47.

    CAS  Google Scholar 

  5. O. Matsumura, Y. Sakuma, and H. Takechi: Trans. Iron Steel Inst. Jpn. Int., 1987, vol. 27, pp. 570–79.

    CAS  Google Scholar 

  6. O. Matsumura, Y. Sakuma, and H. Takechi: Iron Steel Inst. Jpn. Int., 1992, vol. 32 (10), pp. 1100–16.

    Google Scholar 

  7. O. Matsumura, Y. Sakuma, and H. Takechi: Scripta Metall., 1987, vol. 21, pp. 1301–06.

    Article  CAS  Google Scholar 

  8. K. Hulka, W. Bleck, and K. Papamantellos: Proc. 41st MWSP Conf., ISS-AIME, Baltimore, MD, vol. XXXVII, TMS, Warrendale, PA, 1999, pp. 67–76.

    Google Scholar 

  9. M.L. Brandt and G.B. Olson: Ironmaker and Steelmaker, 1993, vol. 20 (5), pp. 55–60.

    CAS  Google Scholar 

  10. Y. Tommita: Mater. Sci., 1995, vol. 30, pp. 105–10.

    Google Scholar 

  11. G. Reisner, E.A. Werner, P. Kerschbaummaur, I. Papst, and F.D. Fischer: J. Met., 1997, vol. 49 (9), pp. 62–65.

    CAS  Google Scholar 

  12. M. De Meyer, D. Vanderschueren, and B.C. De Cooman: Iron Steel Inst. Jpn. Int., 1999, vol. 39 (8), pp. 813–22.

    Google Scholar 

  13. D.Q. Bai, A. Di Chiro, and S. Yue: Mater. Sci. Forum, 1998, vols. 284–286, pp. 253–60.

    Article  Google Scholar 

  14. H.C. Chen, H. Era, and M. Shimizu: Metall. Trans. A, 1989, vol. 20A, pp. 437–45.

    CAS  Google Scholar 

  15. V.T.T. Miihkinen and D.V. Edmonds: Mater. Sci. Technol., 1987, vol. 3, pp. 422–30.

    CAS  Google Scholar 

  16. M. Takahashi and H.K.D.H. Bhadeshia: Mater. Trans., JIM, 1991, vol. 32, pp. 689–96.

    CAS  Google Scholar 

  17. J. Wang and S. Van der Zwaag: Wire, 2001, vol. 50, pp. 1527–39.

    Google Scholar 

  18. I. Tsukatani, S. Hashimoto, and T. Inoue: Iron Steel Inst. Jpn. Int., 1991, vol. 31 (9), pp. 992–1000.

    CAS  Google Scholar 

  19. P.J. Jacques, J. Ladrière, and F. Delanny: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2759–68.

    CAS  Google Scholar 

  20. P. Jacques, A. Petein, and P. Harlet: Int. Conf. on TRIP-Aided High Strength Ferrous Alloys, GRIPS Sparking World of Steel, 2002, vol. 1, pp. 281–85.

  21. H.K.D.H. Bhadeshia: Iron Steel Inst. Jpn. Int., 2002, vol. 42 (9), pp. 1059–60.

    CAS  Google Scholar 

  22. Annual Book of ASTM Standards Metals Test Methods and Analytical Procedures, 1993, vol. 03.01, E 8, pp. 130–49.

  23. G.E. Dieter: Mechanical Metallurgy, 2nd ed., McGraw-Hill Book Company, New York, NY, 1988, pp. 87 and 287.

    Google Scholar 

  24. B.V. Kovacs: AFS Trans., 1994, vol. 102, p. 417.

    CAS  Google Scholar 

  25. B.D. Cullity: Elements of X-Ray Diffraction, Addison-Wesley Publishing Company, Inc., London, 1978, pp. 411–15.

    Google Scholar 

  26. M. Onink, C.M. Brakman, F.D. Tichelaar, E.J. Mittemeijer, S. van der Zwaag, J.H. Root, and N.B. Konyer: Scripta Metall. Mater., 1993, vol. 29 (8), pp. 1011–16.

    Article  CAS  Google Scholar 

  27. A. Zarei-Hanzaki and S. Yue: Iron Steel Inst. Jpn. Int., 1997, vol. 37 (6), pp. 583–89.

    CAS  Google Scholar 

  28. I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma: Metall. Trans. A, 2003, vol. 34A, pp. 1599–609.

    CAS  Google Scholar 

  29. M.X. Zhang and P.M. Kelly: Mater. Characterization, 1998, vol. 40, pp. 159–68.

    Article  CAS  Google Scholar 

  30. P.J. Evans, L.K. Crawford, and A. Jones: Ironmaking and Steelmaking, 1979, vol. 24 (5), p. 361.

    Google Scholar 

  31. N.C. Goel, S. Sangal, and K. Tangri: Metall. Trans. A, 1985, vol. 16, pp. 2013–22.

    Google Scholar 

  32. V.T.T. Miihkinen and D.V. Edmonds: Mater. Sci. Technol., 1987, vol. 3, pp. 422–30.

    CAS  Google Scholar 

  33. H.K.D.H. Bhadeshia and D.V. Edmonds: Metall. Trans. A, 1979, vol. 10, pp. 895–907.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timokhina, I.B., Hodgson, P.D. & Pereloma, E.V. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels. Metall Mater Trans A 35, 2331–2341 (2004). https://doi.org/10.1007/s11661-006-0213-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0213-9

Keywords

Navigation