Skip to main content
Log in

The strain rate effect of an open cell aluminum foam

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The dynamic compressive behavior of an open-cell commercially pure aluminum foam was experimentally investigated with a split Hopkinson bar (SHPB) and numerically simulated using the finite element (FE) method. It is found that the flow stress increases with increasing strain rate, demonstrating the existence of strain rate dependence in the present aluminum foam. This dependence is believed to originate from the polygonal pore architecture, the relatively high density, the intrinsic property of aluminum, as well as the friction force between the contacted cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties, 2nd ed., Cambridge University Press, Cambridge, United Kingdom, 1997, pp. 1–10.

    Google Scholar 

  2. J. Banhart: Progr. Mater. Sci., 2001, vol. 46, pp. 559–632.

    Article  CAS  Google Scholar 

  3. C. San March and A. Mortensen: Acta Mater., 2001, vol. 49, pp. 3959–69.

    Article  Google Scholar 

  4. Sigit Santosa and Tomasz Wierzbicki: J. Mech. Phys. Solids, 1998, vol. 46, pp. 645–69.

    Article  CAS  Google Scholar 

  5. K.A. Dannemann, J. Lankford Jr.: J. Mater. Sci. Eng., 2000, vol. 293, pp. 157–64.

    Article  Google Scholar 

  6. T. Mukai, H. Kanahashi, T. Miyoshi, M. Mabuchi, and T.G. Nieh: Scripta Mater., 1999, vol. 40, pp. 921–27.

    Article  CAS  Google Scholar 

  7. Kathryn A. Dannemann and James Lankford, Jr.: Mater. Sci. Eng. A, 2000, vol. 293, pp. 157–64.

    Article  Google Scholar 

  8. A. Paul and U. Ramamurty: Mater. Sci. Eng. A, 2000, vol. 281, pp. 1–7.

    Article  Google Scholar 

  9. H. Kannahashi and T. Mukai, Y. Yamada, K. Shimojima, M. Mabuchi, T.G. Nieh, and K. Higashi: Mater. Sci. Eng., A2000, vol. 280, pp. 349–53.

    Article  Google Scholar 

  10. V.S. Deshpande and N.A. Fleck: Int. J. Impact Eng., 2000, vol. 24, pp. 277–98.

    Article  Google Scholar 

  11. I.W. Hall, M. Guden, and C.J. Yu: Scripta Mater., 2000, vol. 43, pp. 515–21.

    Article  CAS  Google Scholar 

  12. P.J. Tan, J.J. Harridan, and S.R. Reid: Mater. Sci. Technol., 2002, vol. 18, pp. 480–88.

    Article  CAS  Google Scholar 

  13. J. Gassan, W. Harwick, and D. Girlich: J. Mater. Sci. Lett., 2001, vol. 20, pp. 1047–48.

    Article  CAS  Google Scholar 

  14. F.S. Han, Z.G. Zhu, and J.C. Gao: Metal. Mater. Trans. A, 1998, vol. 29A, p. 2497–502.

    Article  CAS  Google Scholar 

  15. W.E. Warren and A.M. Crank: J. Appl. Mech., 1988, vol. 55, pp. 341–49.

    Article  Google Scholar 

  16. R.M. Christensen: J. Mech. Phys. Solids, 1986, vol. 34, pp. 563–78.

    Article  Google Scholar 

  17. W.E. Warren and A.M. Crank: J. Appl. Mech., 1997, vol. 64, pp. 787–94.

    CAS  Google Scholar 

  18. H.X. Zhu, J.F. Knott, and N.J. Mills: J. Mech. Phys. Solids, 1997, vol. 45, pp. 319–25.

    Article  Google Scholar 

  19. J.L. Grenestedt: Int. J. Solids Struct., 1999, vol. 36, pp. 1471–501.

    Article  Google Scholar 

  20. A.P. Roberts and E.J. Garboczi: Proc. R. Soc., 2002, vol. 458, pp. 1033–54.

    Article  Google Scholar 

  21. A.P. Roberts and E.J. Garboczi: Acta Mater., 2001, vol. 49, pp. 189–97.

    Article  CAS  Google Scholar 

  22. A.P. Roberts and E.J. Garboczi: J. Mech. Phys. Solids, 2002, vol. 50, pp. 33–55.

    Article  Google Scholar 

  23. F.S. Han, H.F. Cheng, J.X. Wang, and Q. Wang: Scripta Mater., 2004, vol. 50, pp. 13–17.

    Article  CAS  Google Scholar 

  24. LS-DYNA Theoretical Manual, Livermore Software Technology Co., 1998, p. 225.

  25. ANSYS/LS-DYNA User’s Guide, ANSYS Inc.

  26. Metals Handbook, 10th ed., vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM INTERNATIONAL, Materials Park, OH, 1990, p. 102.

  27. C.R. Calladine and R.W. English: Int. J. Mech. Sci., 1984, vol. 26, pp. 689–92.

    Article  Google Scholar 

  28. U.S. Lindholm: J. Mech. Phys. Solids, 1964, vol. 12, pp. 317–35.

    Article  Google Scholar 

  29. S.S. Hu, W. Wang, Y. Pan, and Y.H. Li: Explosion Shock Waves, 2003, vol. 23, pp. 13–18 (in Chinese).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, F., Cheng, H., Wang, Q. et al. The strain rate effect of an open cell aluminum foam. Metall Mater Trans A 36, 645–650 (2005). https://doi.org/10.1007/s11661-005-0180-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0180-6

Keywords

Navigation