Skip to main content
Log in

Dislocation structure, phase stability, and yield stress behavior of L12 intermetallics: Ir3X (X = Ti, Zr, Hf, V, Nb, Ta)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The structure and mobility of superdislocations in Ir3X (X = Ti, Zr, Hf, V, Nb, Ta) with L12 structure were investigated in the framework of the modified Peierls-Nabarro (PN) model with first-principles generalized stacking fault energetics calculated using the all-electron full-potential linearized augmented plane wave method (FLAPW). Superlattice intrinsic stacking fault (SISF)-bound superdislocations (Kear splitting scheme) are strongly preferred energetically in Ir3V, Ir3Nb, and Ir3Ta, whereas antiphase boundary (APB)-bound superdislocations (Shockley splitting scheme) are predicted in Ir3Ti, Ir3Zr, and Ir3Hf. Because APB-bound superdislocations are considered responsible for the yield stress anomaly, our results predict that positive yield stress temperature dependence could only be expected in Ir3Ti, Ir3Zr, and Ir3Hf, and a negative one in Ir3V, Ir3Nb, and Ir3Ta. The connection of the mechanical behavior of the Ir3X alloys with the L12 → D019 structural instability is established and the electronic origins of this instability are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.G. Backman and J.C. Williams: Science, 1992, vol. 255, pp. 1082–87.

    Article  CAS  Google Scholar 

  2. D.P. Pope: in Physical Metallurgy, R.W. Cahn and P. Haasen, eds., Elsevier, Amsterdam, 1996, vol. III, pp. 2075–2104.

    Google Scholar 

  3. G.B. Fairbank, C.J. Humphreys, A. Kelly, and C.N. Jones: Intermetallics, 2000, vol. 8, pp. 1091–1100.

    Article  CAS  Google Scholar 

  4. Y. Yamabe-Mitarai, Y. Ro, T. Maruko, and H. Harada: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 537–48.

    Article  CAS  Google Scholar 

  5. Y. Yamabe-Mitarai, M.-H. Hong, Y. Ro, and H. Harada: Phil. Mag. Lett., 1999, vol. 79, pp. 673–82.

    Article  CAS  Google Scholar 

  6. P. Veyssiere and G. Saada: in Dislocations in Solids, F.R.N. Nabarro and M.S. Duesbery, eds., Elsevier, Amsterdam, 1996, vol. 10, pp. 254–441.

    Google Scholar 

  7. A.M. Gyurko and J.M. Sanchez: Mater. Sci. Eng., 1993, vol. A170, pp. 169–75.

    CAS  Google Scholar 

  8. Y. Yamabe-Mitarai, Y. Ro, and S. Nakazawa: Intermetallics, 2001, vol. 9, pp. 423–29.

    Article  CAS  Google Scholar 

  9. M.S. Daw and M.I. Baskes: Phys. Rev. B, 1984, vol. 29, pp. 6443–53.

    Article  CAS  Google Scholar 

  10. S. Znam, D. Nguyen-Manh, D.G. Pettifor, and V. Vitek: Phil. Mag., 2003, vol. 83, pp. 415–38.

    Article  CAS  Google Scholar 

  11. Yu.N. Gornostyrev, O. Yu. Kontsevoi, A.F. Maksyutov, A.J. Freeman, M.I. Katsnelson, A.V. Trefilov, and A.I. Lichtenstein: Phys. Rev. B, 2004, vol. 70., art. no. 014102.

  12. O.N. Mryasov, Yu.N. Gornostyrev, and A.J. Freeman: Phys. Rev. B, 1998, vol. 58, pp. 11927–11932.

    Article  CAS  Google Scholar 

  13. Yu.N. Gornostyrev, M.I. Katsnelson, N.I. Medvedeva, O.N. Mryasov, A.J. Freeman, and A.V. Trefilov: Phys. Rev. B, 2000, vol. 62, pp. 7802–08.

    Article  CAS  Google Scholar 

  14. O.N. Mryasov, Yu.N. Gornostyrev, M. van Schilfgaarde, and A.J. Freeman: Acta Mater., 2002, vol. 50, pp. 4545–54.

    Article  CAS  Google Scholar 

  15. V. Vitek: Crystal Lattice Defects, 1974, vol. 5, pp. 1–34.

    CAS  Google Scholar 

  16. E. Wimmer, H. Krakauer, M. Weinert, and A.J. Freeman: Phys. Rev. B, 1981, vol. 24, pp. 864–75.

    Article  CAS  Google Scholar 

  17. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–68.

    Article  CAS  Google Scholar 

  18. A.T. Paxton: in Electron Theory in Alloy Design, D.G. Pettifor and A.H. Cottrell, eds., Institute of Materials, London, 1992, pp. 158–90.

    Google Scholar 

  19. A.T. Paxton and Y.Q. Sun: Phil. Mag. A, 1998, vol. 78, pp. 85–103.

    Article  CAS  Google Scholar 

  20. V. Paidar, D.P. Pope, and V. Vitek: Acta Metall., 1984, vol. 32, pp. 435–48.

    Article  CAS  Google Scholar 

  21. V. Vitek, D.P. Pope, and J.L. Bassani: in Dislocations in Solids, F.R.N. Nabarro and M.S. Duesbery, eds., Elsevier, North-Holland, 1996, vol. 10, pp. 135–38.

    Google Scholar 

  22. C.T. Liu: Int. Met. Rev., 1984, vol. 29, pp. 168–94.

    CAS  Google Scholar 

  23. W. Lin, J.-H. Xu, and A.J. Freeman: Phys. Rev. B, 1992, vol. 45, pp. 10863–10871.

    Article  CAS  Google Scholar 

  24. J.-H. Xu, W. Lin, and A.J. Freeman: Phys. Rev. B, 1993, vol. 48, pp. 4276–86.

    Article  CAS  Google Scholar 

  25. A. Bieber and F. Gautier: Solid State Commun., 1981, vol. 38, pp. 1219–22.

    Article  CAS  Google Scholar 

  26. A. Kußmann, K. Müller, and E. Raub: Z. Metallkd., 1968, vol. 59, pp. 859–63.

    Google Scholar 

  27. B.C. Giessen, P.N. Dangel, and N.J. Grant: J. Less-Common Met., 1967, vol. 13, pp. 62–70.

    Article  CAS  Google Scholar 

  28. G. Schoeck: Phil. Mag. A, 1994, vol. 69, pp. 1085–95.

    CAS  Google Scholar 

  29. R. Miller and R. Phillips: Phil. Mag. A, 1996, vol. 73, pp. 803–27.

    CAS  Google Scholar 

  30. J.P. Hirth and J. Lote: Theory of Dislocations, McGraw-Hill, New York, NY, 1968.

    Google Scholar 

  31. O.N. Mryasov, Y.N. Gornostyrev, M. van Schilfgaarde, and A.J. Freeman: Mater. Sci. Eng., 2001, vols. A309–A310, pp. 138–41.

    Google Scholar 

  32. L. Lejcek: Czech. J. Phys., 1976, vol. 26, pp. 294–99.

    Article  Google Scholar 

  33. G. Schoeck, J. Ehmann, and M. Fähnle: Phil. Mag. Lett., 1998, vol. 78, pp. 289–95; G. Schoeck: Phil. Mag. A, 2001, vol. 81, pp. 1161–76.

    Article  CAS  Google Scholar 

  34. M. Yamaguchi, V. Paidar, D.P. Pope, and V. Vitek: Phil. Mag. A, 1982, vol. 45, pp. 867–82.

    CAS  Google Scholar 

  35. D.M. Wee and T. Suzuki: Trans. JIM, 1979, vol. 20, pp. 634–46.

    CAS  Google Scholar 

  36. M. Sluiter, Y. Hashi, and Y. Kawazoe: Comput. Mater. Sci., 1999, vol. 14, pp. 283–90.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium entitled “Beyond Nickel-Base Superalloys,” which took place March 14–18, 2004, at the TMS Spring meeting in Charlotte, NC, under the auspices of the SMD-Corrosion and Environmental Effects Committee, the SMD-High Temperature Alloys Committee, the SMD-Mechanical Behavior of Materials Committee, and the SMD-Refractory Metals Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kontsevoi, O.Y., Freeman, A.J., Gornostyrev, Y.N. et al. Dislocation structure, phase stability, and yield stress behavior of L12 intermetallics: Ir3X (X = Ti, Zr, Hf, V, Nb, Ta). Metall Mater Trans A 36, 559–566 (2005). https://doi.org/10.1007/s11661-005-0170-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0170-8

Keywords

Navigation