Skip to main content

Advertisement

Log in

Compressive creep properties of Ir-base refractory superalloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ir-base alloys with the fcc and L12-Ir3X (X = Nb, Zr) two-phase structure have been developed as next-generation high-temperature materials. The compressive creep behavior of Ir-Nb and Ir-Zr alloys was investigated at 2073 K under 137 MPa. The effect of addition of the third element, Zr, on the creep behavior of an Ir-Nb alloy was also investigated at 2073 K for 137 MPa. The creep rate became two orders lower by addition of a small amount of Zr. The lattice misfit change between the fcc and L12 two phase by addition of Zr and the deformation structure in binary and ternary alloys after a creep test were also investigated. The creep behavior is discussed in terms of the lattice misfit, precipitate shape, and their distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. Cottrell: The Mechanical Properties of Matter, Wiley, New York, NY, 1964.

    Google Scholar 

  2. C.T. Liu, H. Inouye, and A.C. Schaffhauser: Metall. Trans. A, 1981, vol. 12A, pp. 993–1002.

    Google Scholar 

  3. D.E. Hayasyn, R.L. Heestand, and C.T. Liu: Mater. Sci. Eng., 1994, vol. A187, pp. 155–60.

    Google Scholar 

  4. N. Tanatsugu, T. Sato, Y. Naruo, T. Kashiwagi, T. Mizutani, T. Monji, and K. Hamabe: Acta Astronautica, 1997, vol. 40, pp. 165–70.

    Article  Google Scholar 

  5. N.S. Stoloff: in Superalloys II, C.T. Sims, N.S. Stoloff, and W.C. Hagel, eds., John Willey & Sons, New York, NY, 1987.

    Google Scholar 

  6. Y. Yamabe, Y. Koizumi, H. Murakami, Y. Ro, T. Maruko, and H. Harada: Scripta Mater., 1996, vol. 35 (2), pp. 211–15.

    Article  CAS  Google Scholar 

  7. Y. Yamabe-Mitarai, Y. Ro, T. Maruko, and H. Harada: Metall. Trans. A, 1998, vol. 29A, pp. 537–49.

    Article  CAS  Google Scholar 

  8. Y. Yamabe-Mitarai, Y.F. Gu, and H. Harada: Platinum Met. Rev., 2002, vol. 46 (2), pp. 74–81.

    CAS  Google Scholar 

  9. Y. Yamabe-Mitarai, S. Nakazawa, and H. Harada: JSME Int. J. Ser. A, 2002, vol. 45 (1), pp. 2–7.

    Article  CAS  Google Scholar 

  10. Y. Yamabe-Mitarai, S. Nakazawa, and H. Harada: Scripta Mater., 2000, vol. 43, pp. 1059–64.

    Article  CAS  Google Scholar 

  11. Y. Yamabe-Mitarai and H. Harada: J. Alloy Compounds, 2003, vol. 361, pp. 169–79.

    Article  CAS  Google Scholar 

  12. Y. Yamabe-Mitarai, Y. Gu, and H. Harada: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2207–2115.

    CAS  Google Scholar 

  13. Y. Gu, Y. Yamabe-Mitarai, S. Nakazawa, and H. Harada: Scripta Mater., 2002, vol. 46, pp. 137–42.

    Article  CAS  Google Scholar 

  14. Y. Gu, Y. Yamabe-Mitarai, S. Nakazawa, and H. Harada: JSME Int. J. Ser. A, 2002, vol. 45 (1), pp. 8–13.

    Article  CAS  Google Scholar 

  15. Y. Yamabe-Mitarai, Y. Gu, Y. Ro, S. Nakazawa, T. Maruko, and H. Harada: Iridium, Proc. Int. Symp., Nashville, TN, 2000, E.L. Ohriner, R.D. Lanam, P. Panfilov, and H. Harada, eds., TMS, Warrendale, PA, 2000, pp. 41–50.

    Google Scholar 

  16. Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, eds., ASM, Materials Park, OH, 1990, vol. 3, pp. 1424 and 2373.

    Google Scholar 

  17. Y. Gu, Y. Yamabe-Mitarai, Y. Ro, T. Yokokawa, and H. Harada: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2629–39.

    CAS  Google Scholar 

  18. Y. Yamabe-Mitarai and H. Harada: Mater. Sci. Eng. A, in press.

  19. http://www.iumsc.indiana.edu/radii.html

  20. Y. Yamabe-Mitarai and H. Harada: 2004, unpublished research.

  21. JCPDS, version 2.16, International Center for Diffraction Data, Newtown Square, PA, 1995.

  22. T.M. Pollock and A.S. Argon: Acta Metall. Mater., 1992, vol. 40, 1, pp. 1–30.

    Article  CAS  Google Scholar 

  23. J.K. Tien and R.P. Gamble: Metall. Trans., 1972, vol. 3, pp. 2157–67.

    CAS  Google Scholar 

  24. D.D. Pearson, F.D. Lemkey, and B.H. Kear: in Superalloys 1980, J.K. Tien et al., eds., ASM, Materials Park, OH, pp. 513–20.

  25. J.X. Zhang, T. Murakumo, Y. Koizumi, T. Kobayashi, H. Harada, and S. Masaki, Jr.: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3741–46.

    Article  CAS  Google Scholar 

  26. J.X. Zhang, T. Murakumo, Y. Koizumi, and H. Harada: J. Mater. Sci., 2003, vol. 38, pp. 4883–88.

    Article  CAS  Google Scholar 

  27. F.R.N. Nabarro and H.L. de Villiers: The Physics of Creep, Taylor & Francis, New York, NY, 1995.

    Google Scholar 

  28. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed., Chapman & Hall, New York, NY, 1992.

    Google Scholar 

  29. Y. Yamabe-Mitarai, Y. Ro, T. Maruko, T. Yokokawa, and H. Harada: in Structural Intermetallics 1997, M.V. Nathal, R. Darolia, C.T. Liu, and P.L. Martin, eds., TMS, Warrendale, PA, 1997, pp. 805–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium entitled “Beyond Nickel-Base Superalloys,” which took place March 14–18, 2004, at the TMS Spring meeting in Charlotte, NC, under the auspices of the SMD-Corrosion and Environmental Effects Committee, the SMD-High Temperature Alloys Committee, the SMD-Mechanical Behavior of Materials Committee, and the SMD-Refractory Metals Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamabe-Mitarai, Y., Gu, Y., Harada, H. et al. Compressive creep properties of Ir-base refractory superalloys. Metall Mater Trans A 36, 547–557 (2005). https://doi.org/10.1007/s11661-005-0169-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0169-1

Keywords

Navigation