Skip to main content
Log in

Freeze-off limits in transient liquid-phase infiltration

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Transient liquid-phase infiltration (TLI) involves a powder-metal skeleton and an infiltrant with similar composition containing a melting-point depressant (MPD). Upon infiltration, the MPD diffuses into the skeleton, causing isothermal solidification and allowing a homogeneous final-part composition. Diffusional solidification of the infiltrant can restrict liquid flow and result in premature freeze-off if the liquid solidifies before filling the entire part. A capillary-driven fluid-flow model was developed to predict the infiltration rate and freeze-off limit using a variable skeleton permeability. Diffusional solidification was measured via quenching experiments, compared to theory, and used to define the change in permeability of the skeleton. The infiltration rate was measured via mass increase and compared to the flow model for various skeletons with powder sizes ranging from 60 to 300 µm. The predicted horizontal infiltration freeze-off limits were proportional to the square root of d 3 γ/μDβ 2, where d is the average powder diameter, γ and μ are the infiltrant surface tension and viscosity, respectively, D is the solid diffusivity, and β is a function of the solidus and liquidus concentrations. These relations can be used for selection of processing parameters and for evaluation of new material systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adam Lorenz, Emanuel Sachs, Samuel Allen, Lukas Rafflenbeul, and Brian Kernan: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 631–40.

    CAS  Google Scholar 

  2. Merton C. Flemings: Solidification Processing, McGraw-Hill, New York, NY, 1974, pp. 219–39.

    Google Scholar 

  3. A. Mortensen, L.J. Masur, J.A. Cornie, and M.C. Flemings: Metall. Mater. Trans. A, 1989, vol. 20A, pp. 2535–47.

    CAS  Google Scholar 

  4. L.J. Masur, A. Mortensen, J.A. Cornie, and M.C. Flemings: Metall. Mater. Trans. A, 1989, vol. 20A, pp. 2549–57.

    CAS  Google Scholar 

  5. Robert P. Messner and Yet-Ming Chiang: J. Am. Ceram. Soc., 1990, vol. 73 (5), pp. 1193–200.

    Article  CAS  Google Scholar 

  6. Yet-Ming Chiang, Robert P. Messner, Chrysanthe D. Terwilliger, and Donald R. Behrendt: Mater. Sci. Eng. 1991, vol. A144, pp. 63–74.

    CAS  Google Scholar 

  7. H. Zhuang, J. Chen, and E. Lugscheider: Welding World, 1986, vol. 24 (9–10), pp. 200–08.

    CAS  Google Scholar 

  8. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann: Introduction to Ceramics, 2nd ed., John Wiley & Sons, New York, NY, 1976, p. 185.

    Google Scholar 

  9. George W. Scherer: J. Non-Crystalline Solids, 1987, vol. 92, pp. 375–82.

    Article  Google Scholar 

  10. Adam Lorenz: Ph.D. Thesis, MIT, Cambridge, MA, 2002.

    Google Scholar 

  11. Adrian E. Scheidegger: The Physics of Flow through Porous Media, 3rd ed., University of Toronto Press, Toronto, Canada, 1974.

    Google Scholar 

  12. George B. Thomas, Jr. and Ross L. Finney: Calculus and Analytic Geometry, 8th ed., Addison-Wesley, Reading, MA, 1992, pp. 330 and 354.

    MATH  Google Scholar 

  13. H. Mehrer: Diffusion in Solid Metals and Alloys, Landolt-Bornstein New Series III/26, Springer-Verlag, New York, NY, pp. 1–29.

  14. G.H. Geiger and D.R. Poirier: Transport Phenomena in Metallurgy, Addison-Wesley, Reading, MA, 1980, pp. 473–96.

    Google Scholar 

  15. W.D. MacDonald and T.W. Eagar: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 315–25.

    Article  CAS  Google Scholar 

  16. R.A. Tanzilli and R.W. Heckel: Trans. TMS-AIME, 1968, vol. 242, pp. 2313–21.

    CAS  Google Scholar 

  17. Peter J. Heinzer: ASM Handbook, vol. 7, Powder Metallurgy, ASM, Metals Park, OH, 1984, pp. 263–65.

    Google Scholar 

  18. ASM Handbook, vol. 3, Alloy Phase Diagrams, ASM, Metals Park, OH, 1992.

  19. Takamichi Iida and Roderick I.L. Guthrie, The Physical Properties of Liquid Metals, Clarendon Press, Oxford, United Kingdom, 1988, pp. 47–77 and 109–98.

    Google Scholar 

  20. Neil Kensington Adam: The Physics and Chemistry of Surfaces, 3rd ed., Oxford University Press, London, United Kingdom, 1941, pp. 383–84 and 393.

    Google Scholar 

  21. Smithells Metals Reference Book, 7th ed., E.A. Brandes and G.B. Brook, eds., Butterworth Heinemann, Oxford, United Kingdom, 1992.

    Google Scholar 

  22. Isaac Tuah-Poku, M. Dollar, and T.B. Massalski: Metall. Trans. A, 1988, vol. 19A, pp. 675–86.

    CAS  Google Scholar 

  23. H. Kokawa, C.H. Lee, and T.H. North: Metall. Trans. A, 1991, vol. 22A, pp. 1627–31.

    CAS  Google Scholar 

  24. Y. Zhou, W.F. Gale and T.H. North: Int. Mater. Rev., 1995, vol. 40 (5), pp. 181–96.

    CAS  Google Scholar 

  25. Kazuyoshi Saida, Yunhong Zhou, and Thomas H. North: J. Jpn Inst. Met., 1994, vol. 58 (7), pp. 810–18.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenz, A., Sachs, E. & Allen, S. Freeze-off limits in transient liquid-phase infiltration. Metall Mater Trans A 35, 641–653 (2004). https://doi.org/10.1007/s11661-004-0376-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0376-1

Keywords

Navigation