Skip to main content
Log in

A comparison of the molecular interaction volume model with the subregular solution model in multicomponent liquid alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The molecular interaction volume model (MIVM) is a two-parameter model, meaning it can predict the thermodynamic properties in a multicomponent liquid alloy system using only the coordination numbers calculated from the ordinary physical quantities of pure liquid metals and the related binary infinite dilute activity coefficients, γ i and γ j , which avoids somewhat adjustable fitting for the binary parameters of B ji and B ij. In comparison with the subregular solution model (SRSM), the prediction effect of the MIVM is of better stability and safety because it has a good physical basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Ansara: in Metallurgical Chemistry, O. Kubaschewski, ed., Her Majesty’s Stationary Office, London, 1972, pp. 403–30.

    Google Scholar 

  2. M. Hillert: in Computer Modeling of Phase Diagrams, L.H. Bennett, ed., TMS, Warrendale, PA, 1986, pp. 1–17.

    Google Scholar 

  3. G.Z. Zhou: Acta Metall. Sinica, 1997, vol. 33 (2), pp. 126–32 (in Chinese).

    CAS  Google Scholar 

  4. J.M. Prausnitz, R.N. Lichtenthaler, and E.G.D. Azevedo: Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd ed., Prentice-Hall Inc., Englewood Cliffs, NJ, 1986, pp. 202–366.

    Google Scholar 

  5. A. Munster: Statistical Thermodynamics, Academic Press, New York, NY, 1974, vol. II, pp. 328 and 641.

    Google Scholar 

  6. M.M. Alger and C.A. Eckert: Ind. Eng. Chem. Fundam., 1983, vol. 22, pp. 249–54.

    Article  CAS  Google Scholar 

  7. H.K. Hardy: Acta Metall., 1953, vol. 1, pp. 202–6.

    Article  CAS  Google Scholar 

  8. K.C. Chou and S.K. Wei: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 439–45.

    Article  CAS  Google Scholar 

  9. A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin, and Y. Dessureault: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 651–59.

    Article  CAS  Google Scholar 

  10. T. Tanaka, N.A. Gokcen, and Z. Morita: Z. Metallkd., 1990, vol. 81, pp. 49–55.

    CAS  Google Scholar 

  11. W.J. Howell and C.A. Eckert: AIChE J., 1987, vol. 33, pp. 1612–15.

    Article  CAS  Google Scholar 

  12. J. Zhang: J. Univ. Sci. Technol. Beijing, 1994, vol. 1 (12), pp. 20–30.

    Google Scholar 

  13. D.P. Tao: Thermochimica Acta, 2000, vol. 363, pp. 105–13.

    Article  CAS  Google Scholar 

  14. D.P. Tao: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 1205–11.

    Article  CAS  Google Scholar 

  15. D.P. Tao, D.F. Li, and B. Yang: Thermochimica Acta, 2002, vol. 383, pp. 45–51.

    Article  CAS  Google Scholar 

  16. D.P. Tao, B. Yang, and D.F. Li: Fluid Phase Equilibria, 2002, vol. 193, pp. 167–177.

    Article  CAS  Google Scholar 

  17. R.C. Evans: An Introduction to Crystal Chemistry, Cambridge University Press, London, 1976, p. 87.

    Google Scholar 

  18. Y.M. Muggianu, M. Gambino, and J.-P. Bros: J. Chim. Phys. (Paris), 1965, vol. 72, pp. 83–88.

    Google Scholar 

  19. T. Iida and R.I.L. Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, United Kingdom, 1988, pp. 19–46.

    Google Scholar 

  20. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Geiser, and K.K. Kelley: Selected Values of the Thermodynamic Properties of Binary Alloys, ASM, Metals Park, OH, 1973.

    Google Scholar 

  21. J.F. Elliott and J. Chipman: J. Am. Chem. Soc., 1951, vol. 73, pp. 2682–93.

    Article  CAS  Google Scholar 

  22. S. Mellgren: J. Am. Chem. Soc., 1952, vol. 74, pp. 5037–40.

    Article  CAS  Google Scholar 

  23. Z. Moser, L. Zabdyr, and A. Pelton: Can. Metall. Q., 1975, vol. 14, pp. 257–64.

    CAS  Google Scholar 

  24. W.T. Thompson, A. Leung, and D.G. Hurkot: Can. Metall. Q., 1973, vol. 12, pp. 421–33.

    CAS  Google Scholar 

  25. W. Ptak and Z. Moser: J. Electrochem. Soc., 1972, vol. 119, pp. 843–48.

    Article  CAS  Google Scholar 

  26. W. Ptak and Z. Moser: Trans. TMS-AIME, 1968, vol. 242, pp. 558–65.

    CAS  Google Scholar 

  27. M. Hoch and Z. Moser: Archives Metall., 1992, vol. 37, pp. 283–96.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, D.P. A comparison of the molecular interaction volume model with the subregular solution model in multicomponent liquid alloys. Metall Mater Trans A 35, 419–424 (2004). https://doi.org/10.1007/s11661-004-0352-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0352-9

Keywords

Navigation