Skip to main content

Advertisement

Log in

Shape memory properties of Ni-Ti based melt-spun ribbons

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Shape-memory properties of equiatomic NiTi, Ni45Ti50Cu5, and Ni25Ti50Cu25 ribbons made by melt spinning have been studied by temperature inducing the martensitic transformation under constant tensile loads. Recoverable strains above 4 pct can be obtained under ∼100 MPa loads for the NiTi and Ni45Ti50Cu5 ribbons, transforming to B19’ martensite. The B19 martensite is formed in the Ni25Ti50Cu25 ribbon after crystallization, and according to the lowering in transformation strain as Cu content increases, the recoverable strain is close to 2.5 pct for ∼150 MPa load. The transformation temperatures exhibit a linear dependence on the applied stress, which can be quantitatively described by means of a Clausius-Clapeyron type equation. The NiTi and Ni45Ti50Cu5 ribbons exhibited some degree of two-way shape-memory effect (TWSME) after thermomechanical cycling. Texture analyses performed on the different ribbons allow us to better understand the transformation strains obtained in each ribbon. The amounts of shape-memory effect (SME) and nonrecoverable strain shown by the studied ribbons are of the same order as those already observed in bulk materials, which makes melt spinning an ideal substitute to complicated manufacturing processes if really thin samples are needed. However, applicable stresses in melt-spun ribbons are limited by a relatively “premature” brittle fracture caused by irregularities in ribbon thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Beyer and J.H. Mulder: Mater. Res. Soc. Symp. Proc., 1995, vol. 360, pp. 443–54.

    CAS  Google Scholar 

  2. H. Hosoda, T. Fukul, K. Inoue, Y. Mishima, and T. Suzuki: Mater. Res. Soc. Symp. Proc., 1997, vol. 459, pp. 287–93.

    Google Scholar 

  3. V.A. Lobodyuk and M.M. Medyukh: Met. Phys. Adv. Technol., 1997, vol. 16, pp. 493–503.

    Google Scholar 

  4. M. Piao, S. Miyazaki, K. Otsuka, and N. Nishida: Mater. Trans. JIM, 1992, vol. 33, pp. 337–45.

    CAS  Google Scholar 

  5. K. Otsuka and C.M. Wayman: Shape Memory Materials, 1st ed., Cambridge University Press, Cambridge, United Kingdom, 1998, pp. 49–96.

    Google Scholar 

  6. W.J. Moberly and K.N. Melton: Engineering Aspects of Shape Memory Alloys, 1st ed., Butterworth-Heinemann Ltd., Essex, 1990, pp. 46–57.

    Google Scholar 

  7. D.R. Angst, P.E. Thoma, and M.Y. Kao: J. Phys. IV, 1995, vol. C8, pp. 747–52.

    Google Scholar 

  8. S.F. Hsieh and S.K. Wu: Mater. Characterization, 1998, vol. 41, pp. 151–62.

    Article  CAS  Google Scholar 

  9. R. Santamarta, C. Seguí, J. Pons, and E. Cesari: Scripta Mater., 1999, vol. 41, pp. 867–72.

    Article  CAS  Google Scholar 

  10. E. Cesari, J. Pons, R. Santamarta, C. Seguí, D. Stróz, and H. Morawiec: Proc. XVIII Conf. on Applied Crystallography, World Scientific, Singapore, 2001, pp. 171–85.

    Google Scholar 

  11. Y. Furuya, M. Matsumoto, and T. Matsumoto: Proc. Int. Conf. on Martensitic Transformation, Monterey Institute for Advanced Studies, Monterey, CA, 1993, pp. 905–09.

    Google Scholar 

  12. S.D. Wang, X.Z. Wu, J.P. Zhang, H.Q. Su, J.L. Jin, and B.T. Song: Trans. Mater. Res. Soc. Jpn., 1994, vol. 18B, pp. 1061–64.

    CAS  Google Scholar 

  13. R. Santamarta, E. Cesari, J. Pons, C. Seguí, P. Ochin, and R. Portier: Proc. Solid-Solid Phase Transformation ’99, The Japan Institute of Metals, Sendai, 1999, pp. 1076–79.

    Google Scholar 

  14. P. Wollants, M. De Bonte, and J.R. Roos: Z. Metallkd., 1979, vol. 70, pp. 113–17.

    Google Scholar 

  15. S. Miyazaki and K. Otsuka: Metall. Trans. A, 1986, vol. 17A, pp. 53–63.

    CAS  Google Scholar 

  16. C.B. Stachowiak and P.G. McCormick: Acta Metall., 1988, vol. 36, pp. 291–97.

    Article  CAS  Google Scholar 

  17. P. Sittner and V. Novák: Int. J. Plasticity, 2000, vol. 16, pp. 1243–68.

    Article  MATH  CAS  Google Scholar 

  18. K. Bhattacharya and R.V. Kohn: Acta Mater., 1996, vol. 44, pp. 529–42.

    Article  CAS  Google Scholar 

  19. P. Olier, J.C. Brachet, J.L. Bechade, C. Foucher, and G. Guénin: J. Phys. IV, 1995, vol. C8, pp. 741–46.

    Google Scholar 

  20. G. Airoldi, T. Ranucci, G. Riva, and A. Sciacca: J. Phys.-Condens. Mat., 1995, vol. 7, pp. 3709–20.

    Article  ADS  CAS  Google Scholar 

  21. T. Goryczka: Ph.D. Thesis, University of Silesia, Katowice, 2001.

    Google Scholar 

  22. C.S. Barret and T.B. Massalski: Structure of Metals, 3rd ed., McGraw-Hill, New York, NY, 1966.

    Google Scholar 

  23. H. Rösner, P. Schlosmacher, A.V. Sheliakov, and A.M. Glezer: Scripta Mater., 2000, vol. 43, pp. 871–76.

    Article  Google Scholar 

  24. T.H. Nam, T. Saburi, and K. Shimizu: Mater. Trans. JIM, 1990, vol. 31, pp. 959–67.

    Google Scholar 

  25. T.H. Nam, T. Saburi, Y. Nakata, and K. Shimizu: Mater. Trans. JIM, 1990, vol. 31, pp. 1050–56.

    CAS  Google Scholar 

  26. T. Goryczka, M. Karolus, P. Ochin, and H. Morawiec: J. Phys. IV, 2001, vol. 11, pp. 345–50.

    Google Scholar 

  27. A.V. Shelyakov, Y.A. Bykovsky, N.M. Matveeva, and Y.K. Kovneristy: J. Phys. IV, 1995, vol. C8, pp. 713–16.

    Google Scholar 

  28. Y. Liu and H. Yang: Mater. Sci. Eng. A, 1999, vol. A260, pp. 240–45.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santamarta, R., Cesari, E., Pons, J. et al. Shape memory properties of Ni-Ti based melt-spun ribbons. Metall Mater Trans A 35, 761–770 (2004). https://doi.org/10.1007/s11661-004-0004-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0004-0

Keywords

Navigation