Skip to main content
Log in

Tailoring the Microstructure in Polycrystalline Co–Ni–Ga High-Temperature Shape Memory Alloys by Hot Extrusion

  • SPECIAL ISSUE: HTSMA 2018, INVITED PAPER HTSMA
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

Co–Ni–Ga alloys represent a new class of promising high-temperature shape memory alloys allowing realization of functional components for applications at elevated temperatures. Single crystals show a fully reversible pseudoelastic response at temperatures up to 500 °C. However, for most industrial applications, the application of polycrystalline material is needed. Polycrystalline Co–Ni–Ga alloys suffer from the anisotropic properties inherent to shape memory alloys, i.e., a strong orientation dependence of transformation strains, and therefore, are prone to intergranular fracture. This drawback can be curtailed by using appropriately textured material with a favorable grain-boundary orientation distribution. The current study discusses the impact of a hot-extrusion process on microstructural evolution and functional properties of polycrystalline Co–Ni–Ga high-temperature shape memory alloys paving the way to their robust application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Otsuka K, Waymann CM (1998) Shape memory materials. University Press, Cambridge

    Google Scholar 

  2. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511–678

    Article  Google Scholar 

  3. Morgan NB (2004) Medical shape memory alloy applications - the market and its products. Mater Sci Eng, A 378:16–23

    Article  Google Scholar 

  4. Lagoudas DC (2008) Shape memory alloys: modeling and engineering applications. Springer, LLC

    Google Scholar 

  5. Duerig TW, Melton KN, Stockel D, Wayman CM (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann, Oxford

    Google Scholar 

  6. Funakubo H (1987) Shape memory alloys. Gordon and Breach, New York

    Google Scholar 

  7. Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315

    Article  Google Scholar 

  8. Liu J, Xie H, Huo Y, Zheng H, Li J (2006) Microstructure evolution in CoNiGa shape memory alloys. J Alloy Compd 420:145–157

    Article  Google Scholar 

  9. Dadda J, Maier HJ, Karaman I, Karaca HE, Chumlyakov YI (2010) High-temperature in situ microscopy during stress-induced phase transformations in Co49Ni21Ga30 shape memory alloy single crystals. Int J Mater Res 101(12):1–11

    Article  Google Scholar 

  10. Dadda J, Maier HJ, Karaman I, Karaca HE, Chumlyakov YI (2006) Pseudoelasticity at elevated temperatures in [001] oriented Co49Ni21Ga30 single crystals under compression. Scripta Mater 55:663–666

    Article  Google Scholar 

  11. Dadda J, Maier HJ, Niklasch D, Karaman I, Karaca HE, Chumlyakov YI (2008) Pseudoelasticity and cyclic stability in Co49Ni21Ga30 shape-memory alloy single crystals at ambient temperature. Metall Mater Trans A 39:2026–2039

    Article  Google Scholar 

  12. Niendorf T, Krooß P, Chumlyakov Y, Maier HJ (2015) Martensite aging—avenue to new high temperature shape memory alloys. Acta Mater 89:298–304

    Article  Google Scholar 

  13. Dadda J, Maier HJ, Karaman I, Chumlyakov YI (2009) Cyclic deformation and austenite stabilization in Co35Ni35Al30 single crystalline high-temperature shape memory alloys. Acta Mater 57:6123–6134

    Article  Google Scholar 

  14. Dadda J, Canadinc D, Maier HJ, Karaman I, Karaca HE, Chumlyakov YI (2007) Stress-strain-temperature behaviour of [001] single crystals of Co49Ni21Ga30 ferromagnetic shape memory alloys uder compression. Philos Mag 87(16):2313–2322

    Article  Google Scholar 

  15. Oikawa K, Ota T, Gejima F, Ohmori T, Kainuma R, Ishida K (2001) Phase equilibria and phase transformations in new B2-type ferromagnetic shape memory alloys of Co–Ni–Ga and Co–Ni–Al systems. Mater Trans 42(11):2472–2475

    Article  Google Scholar 

  16. Brown PJ, Ishida K, Kainuma R, Kanomata T, Neumann K-U, Oikawa K (2005) Crystal structures and phase transitions in ferromagnetic shape memory alloys based on Co–Ni–Al and Co–Ni–Ga. J Phys: Condens Matter 17(8):1301–1310

    Google Scholar 

  17. Liu J, Zheng H, Xia M, Huang Y, Li J (2005) Martensitic transformation and magnetic properties in Heusler CoNiGa magnetic shape memory alloys. Scripta Mater 52(9):935–938

    Article  Google Scholar 

  18. Liu J, Xia M, Huang Y, Zheng H, Li J (2006) Effect of annealing on the microstructure and martensitic transformation of magnetic shape memory alloys CoNiGa. J Alloys Compd 417(1–2):96–99

    Article  Google Scholar 

  19. Yan L, Yan X, Liang C, Yunqing M, Huibin X (2010) Microstructures and shape memory characteristics of dual-phase Co–Ni–Ga high-temperature shape memory alloys. Acta Mater 58:3655–3663

    Article  Google Scholar 

  20. Dogan E, Karaman I, Chumlyakov YI, Luo ZP (2011) Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys. Acta Mater 59(3):1168–1183

    Article  Google Scholar 

  21. Vollmer M, Krooss P, Segel Ch, Weidner A, Paulsen A, Frenzel J, Schaper M, Eggeler G, Maier HJ, Niendorf T (2015) Damage evolution in pseudoelastic polycristalline Co-Ni-Ga high-temperature shape memory alloys. J Alloys Compd 633:288–295

    Article  Google Scholar 

  22. Omori T, Kusama T, Kawata S, Ohnuma I, Sutou Y, Araki Y, Ishida K, Kainuma R (2013) Abnormal grain growth induced by cyclic heat treatment. Science 341:1500–1502

    Article  Google Scholar 

  23. Omori T, Iwaizako H, Kainuma R (2016) Abnormal grain growth induced by cyclic heat treatment in Fe-Mn-Al-Ni superelastic alloy. Mater Des 101:263–269

    Article  Google Scholar 

  24. Krooss P, Niendorf T, Lauhoff C, Karsten E, Gerstein G, Liehr A, Maier HJ (2019) Direct microstructure design by hot extrusion - High-temperature shape memory alloys with bamboo-like microstructure corresponding. Scripta Mater 162:127–131

    Article  Google Scholar 

  25. Maier HJ, Niendorf T, Bürgel R (2015) Handbuch Hochtemperatur-Werkstofftechnik. Springer Fachmedien, Wiesbaden

    Book  Google Scholar 

  26. Humphreys FJ, Hatherly M (1995) Recrystallization and related annealing phenomena. Elsevier, Amsterdam

    Google Scholar 

  27. Arroyave R, Junkaew A, Chivukula A, Bajaj S, Yao C-Y, Garay A (2010) Investigation of the structural stability of Co2NiGa shape memory alloys via ab initio methods. Acta Mater 58:5220–5231

    Article  Google Scholar 

  28. Oikawa K, Ota T, Imano Y, Omori T, Kainuma R, Ishida K (2006) Phase equilibria and phase transformation of Co − Ni − Ga ferromagnetic shape memory alloy system. J Phase Equilib Diffus 27(1):75–82

    Article  Google Scholar 

  29. Braun C, Dake JM, Krill CE, Birringer R (2018) Abnormal grain growth mediated by fractal boundary migration at the nanoscale. Sci Rep 8(1592):1–6

    Google Scholar 

  30. Li Y, Liu HY, Fan-Bin M, Liu GD, Dai XF, Zhang M, Liu ZH, Chen JL, Wu GH (2004) Magnetic field-controlled two-way shape memory on CoNiGa single crystals. Appl Phys Lett 84(18):3594–3596

    Article  Google Scholar 

  31. Dai XF, Wang HY, Liu GD, Wang YG, Duan XF, Chen JL, Wu GH (2006) Effenct of heat treatment on the properties of Co50Ni20Ga30 ferromagnetic shape memory alloy ribbons. J Phys D Appl Phys 39:2886–2889

    Article  Google Scholar 

  32. Dogan E, Karaman I, Singh N, Chivukula A, Thawabi HS, Arroyave R (2012) The effect of electronic and magnetic valences on the martensitic transformation on CoNiGa shape memory alloys. Acta Mater 60:3535–3558

    Article  Google Scholar 

  33. Lackmann J, Niendorf T, Maxisch M, Grundmeier G, Maier HJ (2011) High-resolution in situ characterization of the surface evolution of a polycrystalline NiTi SMA alloy under pseudoelastic deformation. Mater Charact 62(3):298–303

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (DFG) within the Research Unit Program “Hochtemperatur-Formgedächtnislegierungen” (Project Number 200999873; Grant Nos. NI1327/3-2 and MA1175/34-2) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Karsten.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karsten, E., Gerstein, G., Golovko, O. et al. Tailoring the Microstructure in Polycrystalline Co–Ni–Ga High-Temperature Shape Memory Alloys by Hot Extrusion. Shap. Mem. Superelasticity 5, 84–94 (2019). https://doi.org/10.1007/s40830-019-00208-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-019-00208-7

Keywords

Navigation