Skip to main content
Log in

Analysis of fracture toughness in the transition-temperature region of an Mn-Mo-Ni low-alloy steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study is concerned with the analysis of fracture toughness in the transition region of an Mn-Mo-Ni low-alloy steel, in accordance with the ASTM E1921 standard test method. Elastic-plastic cleavage fracture toughness (K Jc ) was determined by three-point bend tests, using precracked Charpy V-notch (PCVN) specimens, and relationships between K Jc , the critical component of J (J c ), critical distance (X c ), stretch-zone width (SZW), local fracture stress, and plane-strain fracture toughness (K Ic were discussed on the basis of the cleavage fracture behavior in the transition region. The master curve and the 95 pct confidence curves well explained the variation in the measured K Jc , and the Weibull slope measured on the Weibull plots was consistent with the theoretical slope of 4. Fractographic observation indicated that X c linearly increased with increasing J c , and that the SZW had a good correlation with K Jc , irrespective of the test temperature. In addition, the local fracture stress was independent of the test temperature, because the tempered bainitic steel used in this study showed a propagation-controlled cleavage fracture behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.G. Druce and B.C. Edwards: Nucl. Energy, 1980, vol. 19, pp. 347–60.

    CAS  Google Scholar 

  2. K. Suzuki: J. Nucl. Mater., 1982, vols. 108–109, pp. 443–50.

    Article  Google Scholar 

  3. N. Ohashi, T. Enami, H. Wanaka, and K. Aso: Nucl. Eng. Design, 1984, vol. 81, pp. 193–205.

    Article  CAS  Google Scholar 

  4. M. Frve, F. Papouschek, K. Fischer, and C. Maidorn: Nucl. Eng. Design, 1988, vol. 108, pp. 485–95.

    Article  CAS  Google Scholar 

  5. B. Chapelle: Nucl. Energy, 1992, vol. 31, pp. 417–25.

    CAS  Google Scholar 

  6. P. Bocquet, A. Cheviet, and R. Dumont: Nucl. Eng. Design, 1994, vol. 151, pp. 503–11.

    Article  CAS  Google Scholar 

  7. K. Suzuki, I. Sato, and H. Tsukada: Nucl. Eng. Design, 1994, vol. 151, pp. 513–22.

    Article  CAS  Google Scholar 

  8. R.M. Boothby, C.A. Hippsley, O.K. Gorton, and S.J. Garwood: Nucl. Energy, 1995, vol. 34, pp. 229–38.

    CAS  Google Scholar 

  9. J.R. Hawthorne: Nucl. Eng. Design, 1985, vol. 89, pp. 223–32.

    Article  CAS  Google Scholar 

  10. ASTM Standard E399-90, ASTM, Philadelphia, PA, 1990.

  11. ASTM Standard E1737-96, ASTM, Philadelphia, PA, 1996.

  12. T.L. Anderson and R.H. Dodds: J. Testing Evaluation, 1991, vol. 19, pp. 123–34.

    Article  Google Scholar 

  13. British Standard 5762:1979, BSI, London, UK, 1979.

  14. ASTM Standard E1921-97, ASTM, Philadelphia, PA, 1997.

  15. S. Kim, Y. Im, S. Lee, H. Lee, Y.J. Oh, and J.H. Hong: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 903–11.

    CAS  Google Scholar 

  16. H. Kotilainen: Metals Laboratory Report No. 41, Technical Research Center of Finland, Helsinki, Finland, 1979.

    Google Scholar 

  17. Y.S. Ahn, Y.J. Oh, H.D. Kim, G.M. Kim, and J.H. Hong: J. Kor. Inst. Metall. Mater., 2000, vol. 38, pp. 466–73.

    CAS  Google Scholar 

  18. K. Wallin: Eng. Fract. Mech., 1984, vol. 19, pp. 1085–93.

    Article  Google Scholar 

  19. T.L. Anderson and D. Stienstra: J. Testing Evaluation, 1989, vol. 17, pp. 46–53.

    Google Scholar 

  20. J. Heerens and D.T. Read: NISTIR 88-3099, NIST, Boulder, CO, 1988.

  21. G.T. Hahn: Metall. Trans. A, 1984, vol. 15A, pp. 947–59.

    CAS  Google Scholar 

  22. K. Wallin, T. Saario, and K. Törrönen: Int. J. Fract. 1987, vol. 32, pp. 201–09.

    Article  Google Scholar 

  23. A. Kelly and B.E. Davies: Metall. Rev., 1965, vol. 10, pp. 1–77.

    CAS  Google Scholar 

  24. R.M. McMeeking: J. Mech. Phys. Solids, 1977, vol. 25, pp. 357–81.

    Article  CAS  Google Scholar 

  25. J.W. Hutchinson: J. Mech. Phys. Solids, 1968, vol. 16, pp. 13–31.

    Article  Google Scholar 

  26. J.R. Rice and G.F. Rosengren: J. Mech. Phys. Solids, 1968, vol. 16, pp. 1–12.

    Article  Google Scholar 

  27. C.F. Shih: J. Mech. Phys. Solids, 1981, vol. 29, pp. 305–26.

    Article  Google Scholar 

  28. J. Watanabe, T. Iwadate, Y. Tanaka, T. Yokobori, and K. Ando: Eng. Fract. Mech., 1987, vol. 28, pp. 589–600.

    Article  Google Scholar 

  29. J.F. Knott: J. Iron Steel Inst., 1966, vol. 204, pp. 104–11.

    CAS  Google Scholar 

  30. P. Bowen, S.G. Druce, and J.F. Knott: Acta Metall., 1986, vol. 34, pp. 1121–31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Hwang, B., Lee, S. et al. Analysis of fracture toughness in the transition-temperature region of an Mn-Mo-Ni low-alloy steel. Metall Mater Trans A 34, 1275–1281 (2003). https://doi.org/10.1007/s11661-003-0238-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0238-2

Keywords

Navigation