Skip to main content
Log in

Precipitation of heusler phase (Ni2TiAl) from B2-TiNi in Ni-Ti-Al and Ni-Ti-Al-X (X=Hf, Zr) alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The precipitation of Heusler phase (L21: Ni2TiAl) from a supersaturated B2 (TiNi-based) matrix at 600°C and 800°C is studied using transmission electron microscopy (TEM), analytical electron microscopy (AEM), and three-dimensional atom-probe (3DAP) microscopy in Ni-Ti-Al and Ni-Ti-Al-X (X=Hf and Zr) alloys. The B2/L21 two-phase system, with ordered structures based on the bcc lattice, is chosen for its microstructural analogy to the classical γ/γ′ system with an fcc lattice. Knowledge of the temperature-dependent partitioning of alloying elements and their atomic volumes in the B2-TiNi and L21 phases is desired to support design of high-performance shape-memory alloys (SMAs) with controlled misfit strain and transformation temperatures. After aging at 600°C for up to 2000 hours, the L21 precipitates remain fully coherent at a particle diameter of ∼20 nm. The observed effects of a misfit strain of −1.9 pct on the microstructure of the B2/L21 system are similar to those theoretically predicted and experimentally observed for the γ/γ′ system. The similarities are demonstrated in terms of the precipitate shape, spatial distribution, and minimum distance of separation between L21 precipitates. However, all these effects disappear after aging the alloys at 800°C for 1000 hours, when the L21 precipitates become semicoherent at particle diameters above ∼400 nm. A simple analysis of the size evolution of L21 precipitates after an isochronal aging (1000 hours) experiment suggests that they follow coarsening kinetics at 600°C and growth kinetics at 800°C, consistent with the Langer-Schwartz theory of precipitation kinetics, which predicts that a high supersaturation suppresses the growth regime. Microanalysis using AEM and 3DAP microscopy define the TiNi-Ni2TiAl phase boundaries at 800°C and 600°C. At 800°C, Hf and Zr partition to the B2-TiNi, while at 600°C, they partition slightly to the L21 phase, reducing the lattice misfit to −1.7 and −0.011 pct, respectively, and partition strongly to the metastable phase Ti2Ni3. To describe the composition dependence of the lattice parameter of multicomponent B2 and L21 phases, the atomic volumes of Al, Hf, Ni, Ti, and Zr in the B2-TiNi and L21 phases are determined. A simple model is proposed to predict the lattice parameters of these phases in multicomponent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kahn, M.A. Huff, and A.H. Heuer: J. Micromech. Microeng., 1998, vol. 8, pp. 213–21.

    Article  CAS  Google Scholar 

  2. T. Matsunaga, S. Kajiwara, K. Ogawa, T. Kikuchi, and S. Miyazaki: Mater. Sci. Eng. A, 1999, vol. 273–275, pp. 745–48.

    Google Scholar 

  3. H.D. Gu, L. You, K.M. Leung, C.Y. Chung, K.S. Chan, and J.K.L. Lai: Appl. Surf. Sci., 1998, vol. 129, pp. 579–83.

    Article  Google Scholar 

  4. S. Miyazaki and A. Ishida: Mater. Sci. Eng. A, 1999, vols. 273–275, pp. 106–33.

    Google Scholar 

  5. R.H. Wolf and A.H. Heuer: J. Microelectromech. S., 1995, vol. 4, pp. 206–12.

    Article  CAS  Google Scholar 

  6. K.R.C. Gisser, J.D. Busch, A.D. Johnson, and A.B. Ellis: Appl. Phys. Lett., 1992, vol. 61, pp. 1632–34.

    Article  CAS  Google Scholar 

  7. S. Kajiwara, T. Kikuchi, K. Ogawa, T. Matsunaga, and S. Miyazaki: Phil. Mag. Lett., 1996, vol. 74, pp. 137–44.

    Article  CAS  Google Scholar 

  8. S. Kajiwara: J. Phys. IV, 2001, vol. 11, pp. 395–405.

    Google Scholar 

  9. A. Ishida, K. Ogawa, M. Sato, and S. Miyazaki: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1985–91.

    Article  CAS  Google Scholar 

  10. K. Ohishi, Z. Horita, and M. Nemoto: Mater. T. JIM, 1997, vol. 38, pp. 99–106.

    CAS  Google Scholar 

  11. Y. Koizumi, Y. Ro, S. Nakazawa, and H. Harada: Mater. Sci. Eng. A, 1997, vol. 223, pp. 36–41.

    Article  Google Scholar 

  12. P. Villars and L.D. Calvert: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASTM International, Newbury, OH, 1991, pp. 961 and 4714.

    Google Scholar 

  13. W.C. Johnson and P.W. Voorhees: Solid State Phenom., 1992, vol. 23, pp. 87–104.

    Article  Google Scholar 

  14. D.R. Angst, P.E. Thoma, and M.Y. Kao: J. Phys. IV, 1995, vol. C8, pp. 747–52.

    Google Scholar 

  15. J.H. Mulder, J.H. Maas, and J. Beyer: Proceedings of the International Conference on Martensitic Transformations, 1992, pp. 869–74.

  16. R. Kainuma, I. Ohnuma, and K. Ishida: J. Chim. Phys. PCB, 1997, vol. 94, pp. 978–85.

    CAS  Google Scholar 

  17. http://rsb.info.nih.gov/nih-image/

  18. J.I. Goldstein, D.B. Williams, and G. Cliff: in Principles of Analytical Electron Microscopy, D.C. Joy, A.D. Romig Jr., and J.I. Goldstein, eds., Plenum Press, New York, NY, 1986, pp. 155–217.

    Google Scholar 

  19. DTSA: Desk Top Spectrum Analyzer and X-ray Database, Standard Reference Data Program, National Institute of Standards and Technology, Gaithersburg, MD, 1997.

    Google Scholar 

  20. G. Cliff and G.W. Lorimer: J. Microsc., 1975, vol. 103, pp. 203–07.

    Google Scholar 

  21. J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, and E. Lifshin: Scanning Electron Microscopy and X-ray Microanalysis. Plenum Press, New York, NY, 1984.

    Google Scholar 

  22. Z. Horita, T. Sano, and M. Nemoto: J. Microsc., 1986, vol. 143, pp. 215–31.

    Google Scholar 

  23. D.B. Williams: Practical Analytical Electron Microscopy in Materials Science, Philips Electronic Instruments, Inc., Electron Optics Publishing Group, Mahwah, NJ, 1987.

    Google Scholar 

  24. P. Warren, Y. Murakami, Y. Koizumi, and H. Harada: Mater. Sci. Eng. A, 1997, vol. 223, pp. 17–20.

    Article  Google Scholar 

  25. http://servermac.geologie.uni-frankfurt.de/MacDiff.html

  26. International Tables for crystallography, International Union of Crystallography, Kluwer Academic Publishers, Boston, MA, 1993, pp. 65–68.

  27. P.W. Voorhees and R.J. Schaefer: Acta Metall., 1987, vol. 35, pp. 327–39.

    Article  CAS  Google Scholar 

  28. O. Hellman, J. Vandenbroucke, J.B. du Rivage, and D.N. Seidman: Mater. Sci. Eng. A, 2002, vol. 327, pp. 29–33.

    Article  Google Scholar 

  29. M. Nishida, C.M. Wayman, and T. Honma: Metall. Trans. A, 1986, vol. 17A, pp. 1505–15.

    CAS  Google Scholar 

  30. J. Khalil-Allafia, A. Dlouhy, and G. Eggeler: Acta Mater., 2002, vol. 50, pp. 4255–74.

    Article  Google Scholar 

  31. T. Hara, T. Ohba, K. Otsuka, and M. Nishida: Mater. Trans. JIM, 1997, vol. 38, pp. 277–84.

    CAS  Google Scholar 

  32. T. Mura: In Micromechanics of Defects in Solids, Kluwer Academic Publishers, Hingham, MA, 1987.

    Google Scholar 

  33. H. Matsumoto and H. Ishiguro: J. Less-Common Met., 1989, vol. 153, pp. 57–63.

    Article  CAS  Google Scholar 

  34. H.P. Stüwe and Y. Shimomura: Z. Metallkd., 1960, vol. 51, pp. 180–81.

    Google Scholar 

  35. T.V. Philip and P.A. Beck: Trans. AIME, 1957, vol. 209, pp. 1269–71.

    Google Scholar 

  36. G.R. Purdy and J.G. Parr: Trans. AIME, 1961, vol. 221, pp. 636–39.

    CAS  Google Scholar 

  37. P.H. Kitabjian and W.D. Nix: Acta Mater., 1998, vol. 46, pp. 701–10.

    Article  CAS  Google Scholar 

  38. N. Schmitz-Pranghe and P. Dünner: Z. Metallkd., 1968, vol. 59, pp. 377–82.

    CAS  Google Scholar 

  39. P.A. Romans, O.G. Paasche, and H. Kato: J. Less-Common Met., 1965, vol. 8, pp. 213–15.

    Article  CAS  Google Scholar 

  40. V.N. German, A.A. Bakanova, L.A. Tarasova, and Y.N. Sumulov: Soviet Physics—Solid State, 1970, vol. 12, pp. 490–91.

    Google Scholar 

  41. A.A. Klopotov, T.L. Chekalkin, and V.É. Gyunter: Tech. Phys., 2001, vol. 46, pp. 770–72.

    Article  CAS  Google Scholar 

  42. W.J. Boettinger, L.A. Bendersky, J. Cline, J.A. West, M.J., and Aziz: Mater. Sci. Eng. A, 1991, vol. 133, pp. 592–95.

    Article  Google Scholar 

  43. P.W. Voorhees, G.B. McFadden, and W.C. Johnson: Acta Mater., 1992, vol. 40, pp. 2979–92.

    Article  CAS  Google Scholar 

  44. O. Mercier, K.N. Melton, G. Gremaud, and J. Hägi: J. Appl. Phys., 1980, vol. 51, pp. 1833–34.

    Article  CAS  Google Scholar 

  45. C.H. Su and P.W. Voorhees: Acta Mater., 1996, vol. 44, pp. 2001–16.

    Article  CAS  Google Scholar 

  46. H. Mehrer, M. Eggersmann, A. Gude, M. Salamon, and B. Sepiol: Mater. Sci. Eng. A, 1997, vol. 240, pp. 889–98.

    Article  Google Scholar 

  47. G. Erdelyi, Z. Erdelyi, D.L. Beke, J. Bernardini, and C. Lexcellent: Phys. Rev. B, 2000, vol. 62, pp. 11284–87.

    Article  CAS  Google Scholar 

  48. J.S. Langer and A.J. Schwartz: Phys. Rev. A, 1980, vol. 21, pp. 948–58.

    Article  CAS  Google Scholar 

  49. M. Enomoto and T. Kumeta: Intermetallics, 1997, vol. 5, pp. 103–09.

    Article  CAS  Google Scholar 

  50. R.D. Field, R. Darolia, and D.F. Lahrman: Scripta Metall., 1989, vol. 23, pp. 1469–74.

    Article  CAS  Google Scholar 

  51. W.J. Boettinger, L.A. Bendersky, F.S. Biancaniello, and J.W. Cahn: Mater. Sci. Eng., 1988, vol. 98, pp. 273–76.

    Article  CAS  Google Scholar 

  52. I. Ansara: Laboratoìre de Thermodynamique et de Physìco-Chìmìe Métallurgiques, CNRS/INPG/UJF, ENSEEG, B.P. 75, 38402 Saìnt-Martìn d’Hères, France, personal communication, 1995.

  53. O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, and D.N. Seidman: Microsc. Microanal., 2000, vol. 6, pp. 437–44.

    Google Scholar 

  54. H. Hosoda, A. Kamio, T. Suzuki, and Y. Mishima: J. Jpn Inst. Met., 1996, vol. 60, pp. 793–801.

    CAS  Google Scholar 

  55. N.I. Medvedeva, Y.N. Gornostyrev, D.L. Novikov, O.N. Mryasov, and A.J. Freeman: Acta. Mater., 1998, vol. 46, pp. 3433–42.

    Article  CAS  Google Scholar 

  56. Y.Y. Ye, C.T. Chan, and K.M. Ho: Phys. Rev. B, 1997, vol. 56, pp. 3678–89.

    Article  CAS  Google Scholar 

  57. D.A. Muller, D.J. Singh, and J. Silcox: Phys. Rev. B, 1998, vol. 57, pp. 8181–202.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, J., Ghosh, G., Isheim, D. et al. Precipitation of heusler phase (Ni2TiAl) from B2-TiNi in Ni-Ti-Al and Ni-Ti-Al-X (X=Hf, Zr) alloys. Metall Mater Trans A 34, 1221–1235 (2003). https://doi.org/10.1007/s11661-003-0233-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0233-7

Keywords

Navigation