Skip to main content
Log in

A composite model for the grain-size dependence of yield stress of nanograined materials

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Based on the observation that, in a nanograined material, a significant portion of atoms resides in the grain-boundary region and grain-boundary activity plays a key role for its plastic behavior, a micromechanics-based composite model is developed to calculate the transition of yield stress as the grain size decreases from the coarse grain to the nanograin regime. The development makes use of a generalized self-consistent scheme in conjunction with the secant moduli of the constituent phases and a field-fluctuation approach. The constituent grains are modeled by inclusions with a grain-size-dependent plastic property and, in order to reflect the atomic sliding inside the grain boundaries observed in molecular dynamic simulations, the grain-boundary phase is modeled as a soft, ductile material with a pressure-dependent property. Applications of the developed model to a high-density copper showed the distinctive—some experimentally observed—features: (1) the yield stress initially increases following the Hall-Petch equation, but as the grain size reduces to the nanorange, it will depart and decrease; (2) when the grain size drops to a critical value (called the critical equicohesive grain size), the slope turns negative, (3) there is a tension-compression asymmetry (or strength-differential effect) in the yield stress, and (4) parametric calculations for materials whose grains deform only elastically indicate that the Hall-Petch plot will exhibit a continuously decreasing negative slope over the entire range of grain size. Further application of the theory to palladium in the nanorange shows a continuous decrease of the yield strength with decreasing grain size. It can be generally concluded that the range following the Hall-Petch equation is dominated by the deformation of the grains, and the range with a negative slope is controlled by the plasticity of the grain boundaries. During the transitional stage, both grains and grain boundaries deform competitively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Siegel and G.F. Fougere: NanoStr. Mater. 1995, vol. 6, pp. 205–16.

    Article  CAS  Google Scholar 

  2. H. Gleiter: Progs. Mater. Sci., 1989, vol. 33, pp. 223–315.

    Article  CAS  Google Scholar 

  3. E.O. Hall: Proc. Phys. Soc., 1951, vol. B64, pp. 747–53.

    CAS  Google Scholar 

  4. N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.

    CAS  Google Scholar 

  5. L. Lu, M.L. Sui, and K. Lu: Science, 2000, vol. 287, pp. 1463–66.

    Article  CAS  Google Scholar 

  6. B.-N. Kim, K.K. Hiraga, K. Morita, and Y. Sakka: Nature, 2001, vol. 413, pp. 288–91.

    Article  CAS  Google Scholar 

  7. A.H. Chokshi, A. Rosen, J. Karch, and H. Gleiter: Scripta Metall., 1989, vol. 23, pp. 1679–83.

    Article  CAS  Google Scholar 

  8. P.G. Sanders, J.A. Eastman, and J.R. Weertman: Acta Mater., 1997(a), vol. 45, pp. 4019–25.

    Article  CAS  Google Scholar 

  9. P.G. Sanders, C.J. Youngdahl, and J.R. Weertman: Mater. Sci. Eng., 1997(b), vols. A234–A236, pp. 77–82.

    Google Scholar 

  10. J. Schiotz, F.D. Di Tolla, and K.W. Jacobsen: Nature, 1998, vol. 391, pp. 561–63.

    Article  Google Scholar 

  11. R.M. Christensen and K.H. Lo: J. Mech. Phys. Solids, 1979, vol. 27, pp. 315–30.

    Article  CAS  Google Scholar 

  12. H. Gleiter: Acta Mater. 2000, vol. 48, pp. 1–29.

    Article  CAS  Google Scholar 

  13. J.D. Eshelby, F.C. Frank, and F.R.N. Naborro: Phil. Mag., 1951, vol. 42, pp. 351–64.

    Google Scholar 

  14. H. Conrad, S. Feuerstein, and L. Rice: Mater. Sci. Eng., 1967, vol. A2, pp. 157–68.

    Google Scholar 

  15. R.L. Jones and H. Conrad: Trans. TMS-AIME, 1969, vol. 245, pp. 779–89.

    CAS  Google Scholar 

  16. G.J. Weng: J. Mech. Phys. Solids, 1983, vol. 31, pp. 193–203.

    Article  Google Scholar 

  17. R. Hill: J. Mech. Phys. Solids, 1965, vol. 13, pp. 89–101.

    Article  CAS  Google Scholar 

  18. M. Berveiller and A. Zaoui: J. Mech. Phys. Solids, 1979, vol. 26, pp. 325–44.

    Article  Google Scholar 

  19. J. Schiotz, T. Vegge, F.D. Di Tolla, and K.W. Jacobsen: Phys. Rev. B, 1999, vol. 60, pp. 11971–83.

    Article  CAS  Google Scholar 

  20. H. Van Swygenhoven and A. Caro: Appl. Phys. Lett., 1997, vol. 71, pp. 1652–54.

    Article  Google Scholar 

  21. Y. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter: Acta Mater., 2002, vol. 50, pp. 61–73.

    Article  CAS  Google Scholar 

  22. P.E. Donovan: Acta Metall., 1989, vol. 37, pp. 445–56.

    Article  CAS  Google Scholar 

  23. D.C. Drucker: Q. Appl. Math, 1950, vol. 7, pp. 411–18.

    Google Scholar 

  24. Z. Hashin: J. Appl. Mech., 1962, vol. 29, pp. 143–50.

    CAS  Google Scholar 

  25. Z. Hashin and S. Shtrikman: J. Mech. Phys. Solids, 1963, vol. 11, pp. 127–40.

    Article  Google Scholar 

  26. G.J. Weng: Int. J. Eng. Sci., 1984, vol. 22, pp. 845–56.

    Article  Google Scholar 

  27. H.A. Lo and G.J. Weng: Mech. Mater., 1987, vol. 6, pp. 347–61.

    Article  Google Scholar 

  28. G.P. Tandon and G.J. Weng: J. Appl. Mech., 1988, vol. 55, pp. 126–35.

    Article  CAS  Google Scholar 

  29. R. Hill: J. Mech. Phys. Solids, 1963, vol. 11, pp. 357–72.

    Article  Google Scholar 

  30. M. Bobeth and G. Diener: J. Mech. Phys. Solids, 1986, vol. 34, pp. 1–17.

    Article  Google Scholar 

  31. W. Kreher and W. Pompe: Internal Stress in Heterogeneous Solids, Akademie, Berlin, 1989.

    Google Scholar 

  32. G.K. Hu: Int. J. Plasticity, 1996, vol. 12, pp. 439–49.

    Article  CAS  Google Scholar 

  33. T.H. Courtney: Mechanical Behavior of Materials, McGraw-Hill, New York, NY, 2000, p. 60.

    Google Scholar 

  34. Z. Jeffries: Trans. AIME, 1919, vol. 60, p. 474.

    Google Scholar 

  35. C. Crussard and R. Tamhankar: Trans. TMS-AIME, 1958, vol. 212, pp. 718–30.

    CAS  Google Scholar 

  36. M.A. Meyers, D.J. Benson, and H.-H. Fu: in Advanced Materials for the 21st Century: The 1999 Julia R. Weertman Symp., Y.-W. Chung, D.C. Dunand, P.K. Liaw, and G.B. Olson, eds., TMS, Warrendale, PA, 1999, pp. 499–512.

    Google Scholar 

  37. M.A. Meyers and E. Ashworth: Phil. Mag., 1982, vol. A46, pp. 737–59.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, B., Weng, G.J. A composite model for the grain-size dependence of yield stress of nanograined materials. Metall Mater Trans A 34, 765–772 (2003). https://doi.org/10.1007/s11661-003-0111-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0111-3

Keywords

Navigation