Skip to main content
Log in

Postnecking elastoplastic characterization: Degree of approximation in the bridgman method and properties of the flow-stress/true-stress ratio

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The stress and strain radial distributions within the minimum cross section of a tensile specimen undergoing necking, calculated with the Bridgman method, differ, in some cases substantially, from finite-element method (FEM) results. Analyses of the possible reasons for these differences show that an important role is played by the uniformity of the strain distribution assumed by Bridgman. In this study, three types of steels were subjected to tensile testing, and FEM analyses were performed to simulate the experimental trails. The comparison of the experimental and numerical results indicates the magnitude of the approximations intrinsic to the Bridgman method. Through further FEM analyses, it was possible to isolate, in qualitative terms, the influence of the Bridgman approximation from that of the void growth. This has been made by applying the Bridgman formulation to the proper FEM output data and comparing the resulting curves to the curves used as material input for the same analyses. Finally, it was found that, over a certain range of hardening materials, the correction of the true curve depends only on the necking strain, within the same error level given by the Bridgman method. This means that, once the corrective law common to many materials is found, then the correction procedure is substantially improved in terms of effort and time consumption, because it does not need the necking-curvature measurements required by the Bridgman method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Bridgman: Studies in Large Flow and Fracture, McGraw-Hill, New York, NY, 1956.

    Google Scholar 

  2. J.C. Earl and K.D. Brown: Eng. Fract. Mech., 1976, vol. 8, pp. 599–611.

    Article  Google Scholar 

  3. M. Alves and N. Jones: J. Mech. Phys. Solids, 1999, vol. 47, pp. 643–67.

    Article  CAS  Google Scholar 

  4. J.W. Hancock and D.K. Brown: J. Mech. Phys. Solids, 1983, vol. 31, pp. 1–24.

    Article  Google Scholar 

  5. G. La Rosa, G. Mirone, and A. Risitano: Proc. XXVIII Italian Association for Stress Analysis Annual Congr., Vicenza, Sept. 1999, AIAS, Vicenza, Italy, 1999, pp. 371–80 (in Italian).

    Google Scholar 

  6. G. La Rosa, G. Mirone, and A. Risitano: Int. Conf. on Mechanics VI, WIT, Montreal, Canada, 2000, pp. 553–63.

    Google Scholar 

  7. A.C. Mackenzie, J.W. Hancock, and D.K. Brown: Eng. Fract. Mech., 1977, vol. 9, pp. 167–88.

    Article  CAS  Google Scholar 

  8. G. Le Roy, J.D. Embury, G. Edwards, and M.F. Ashby: Acta Metall., 1981, vol. 29, pp. 1509–22.

    Article  Google Scholar 

  9. A.L. Gurson: ASME Trans., J. Eng. Mater. Technol., 1977, vol. 99, pp. 2–15.

    Google Scholar 

  10. K. Santaoya: VTT Technical Research Centre of Finland Publication No. 312, Research Centre of Finland, Espoo, Finland, 1997.

    Google Scholar 

  11. R. Becker, A. Needleman, O. Richmond, and V. Tvergaard: J. Mech. Phys. Solids, 1988, vol. 36 (3), pp. 317–51.

    Article  Google Scholar 

  12. A. Needleman and V. Tvergaard: J. Mech. Phys. Solids, 1984, vol. 32 (6), pp. 461–90.

    Article  Google Scholar 

  13. V. Tvergaard and A. Needleman: Acta Metall., 1984, vol. 32 (1), pp. 157–69.

    Article  Google Scholar 

  14. M. Geni and M. Kikuchi: Computational Mater. Sci., 1999, vol. 16, pp. 391–403.

    Article  CAS  Google Scholar 

  15. R. Shiffmann, J. Heyer, W. Dahl, and W. Bleck: Int. Conf. on Damage and Fracture Mechanics VI, 2000, pp. 129–38.

  16. A.R. Ragab and A.R.C. Saleh: Int. J. Plasticity, 1999, vol. 15, pp. 1041–65.

    Article  Google Scholar 

  17. J.W. Hancock and A.C. Mackenzie: J. Mech. Phys. Solids, 1976, vol. 24, pp. 147–69.

    Article  Google Scholar 

  18. G. La Rosa, G. Mirone, and A. Risitano: Proc. XIV Italian Group of Fracture Congr., Trento, May 1998, IGF, Trento, Italy, 1998, pp. 371–80 (in Italian).

    Google Scholar 

  19. G. La Rosa, G. Mirone, and A. Risitano: Proc. XV Italian National Congr. IGF, Bari, Italy, May 2000, AIAS, Bari, Italy, 2000, pp. 361–71.

    Google Scholar 

  20. J. Lemaitre: A Course on Damage Mechanics, Springer, New York, NY, 1996.

    Google Scholar 

  21. J. Lemaitre: J. Appl. Mech., 1988, vol. 55, pp. 59–72.

    Article  Google Scholar 

  22. J. Lemaitre: Nucl. Eng. Design, 1984, vol. 80, pp. 233–45.

    Article  Google Scholar 

  23. N. Bonora, P. Salvini, and F. Iacoviello: XXV AIAS National Meeting, Gallipoli, 1996, AIAS, Gallipoli (Lecce, Italy), 1996, pp. 345–55.

    Google Scholar 

  24. B. Marini, F. Mudry, and A. Pineau: Eng. Fract. Mech., 1985, vol. 22, pp. 375–86.

    Article  Google Scholar 

  25. S. Argon, J. Im, and R. Safoglu: Metall. Trans. A, 1975, vol. 6A, pp. 825–37.

    CAS  Google Scholar 

  26. M. Saie, J. Pan, and A. Needleman: Int. J. Fracture, 1982, vol. 19, pp. 163–82.

    Article  Google Scholar 

  27. G. La Rosa, G. Mirone, and A. Risitano: Eng. Fract. Mech., 2001, vol. 68 (4), pp. 417–34.

    Article  Google Scholar 

  28. G. La Rosa, G. Mirone, and A. Risitano: Proc. XXX Italian Association for Stress Analysis Annual Congr., Sept. 2001, AIAS, Alghero (Sassari, Italy), pp. 649–55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

La Rosa, G., Risitano, A. & Mirone, G. Postnecking elastoplastic characterization: Degree of approximation in the bridgman method and properties of the flow-stress/true-stress ratio. Metall Mater Trans A 34, 615–624 (2003). https://doi.org/10.1007/s11661-003-0096-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0096-y

Keywords

Navigation