Skip to main content
Log in

Crack-initiation toughness and crack-arrest toughness in advanced 9 pct Ni steel welds containing local brittle zones

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present study investigates the influence of local brittle zones (LBZs) on the fracture resistance of the heat-affected zones (HAZs) in quenched, lamellarized, and tempered (QLT) 9 pct Ni steel weld joints. The results of Charpy impact tests using simulated coarse-grained, heat-affected zone (CGHAZ) specimens show that the intercritically reheated (IC) CGHAZ and unaltered (UA) CGHAZ are the primary and secondary LBZs, respectively, of the steel at cryogenic temperature. Compact crack arrest (CCA) tests and crack-tip opening displacement (CTOD) tests were conducted at a liquefied natural gas (LNG) temperature to measure the variations in crack-arrest toughness and crack-initiation toughness along the distance from the fusion line (FL) within the actual HAZ. While CTOD tests show a decrease in toughness when approaching the FL, i.e., the regions containing LBZs, the crack-arrest-toughness values are found to be higher than those in the regions near the base materials. This is due to the fact that the crack-arrest toughness is governed by the fraction of microstructures surrounding LBZs instead of the LBZs themselves. By direct comparison of the brittle-crack-arrest toughness (K a ) with the brittle-crack-initiation toughness (K c ), this investigation has determined that, with regard to crack-arrest behavior, the LBZs of QLT-9 pct Ni steel do not limit the practical safety performance of the weld joints in LNG storage tanks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.H. Lee, S.W. Lee, J.Y. Yoo, and W.Y. Choo: Proc. 2nd Pacific Rim Int. Conf. on Advanced Materials and Processing, Kyongju, Korea, 1995, pp. 2035–44.

    Google Scholar 

  2. J.-B. Lee and J.-K. Han: J. Kor. Weld. Soc., 1995, vol. 13, pp. 34–40.

    Google Scholar 

  3. J.I. Kim, C.K. Syn, and J.W. Morris, Jr.: Metall. Trans. A, 1983, vol. 7A, pp. 93–103.

    Google Scholar 

  4. D.P. Fairchild: Fatigue and Fracture Testing of Weldments, ASTM STP 1058, ASTM, Philadelphia, PA, 1990, pp. 117–41.

    Google Scholar 

  5. B.C. Kim, S. Lee, N.J. Kim, and D.Y. Lee: Metall. Trans. A, 1991, vol. 22A, pp. 139–49.

    CAS  Google Scholar 

  6. S. Lee, B.C. Kim, and D. Kwon: Metall. Trans. A, 1992, vol. 23A, pp. 2803–16.

    CAS  Google Scholar 

  7. M. Toyoda: J. Jpn. Weld. Soc., 1993, vol. 62, pp. 603–16.

    Google Scholar 

  8. C.L. Davis and J.E. King: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 563–73.

    CAS  Google Scholar 

  9. API RP 2Z, 2nd edition, Recommended Practice for Preproduction Qualification for Steel Plates for Offshore Structures, American Petroleum Institute, Washington, D.C., 1992.

    Google Scholar 

  10. L. Malik, L.N. Pussegoda, B.A. Gravile, and W.R. Tyson: J. OMAE (Trans. ASME), 1996, vol. 118, pp. 292–99.

    Google Scholar 

  11. K. Masubuchi: Analysis of Welded Structures, Pergamon Press, New York, NY, 1980, ch. 2.

    Google Scholar 

  12. Standard Test Method for Determining Plane-Strain Crack Arrest Fracture Toughness, K Ia , of Ferritic Steel, ASTM Standard E 1221, ASTM, Philadelphia, PA, 1988.

  13. Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement, ASTM Standard E 1290, ASTM, Philadelphia, PA, 1993.

  14. Fracture Mechanics Toughness Tests, Part 2: Method for Determination of K IC , Critical CTOD and Critical J Values of Welds in Metallic Materials, British Standard 7448, British Standards Institution, London, UK, 1997.

  15. K. Satoh, M. Toyoda, E. Minami, S. Satoh, M. Nakanishi, and K. Arimochi: J. Jpn. Weld. Soc., 1983, vol. 52, pp. 154–61.

    Google Scholar 

  16. J.-I. Jang, Y.-C. Yang, W.-S. Kim, and D. Kwon: Adv. Cryog. Eng., 1998, vol. 44, pp. 41–48.

    CAS  Google Scholar 

  17. F. Minami, M. Toyoda, C. Thaulow, and M. Hauge: Q. J. Jpn. Weld. Soc., 1995, vol. 13, pp. 508–17.

    CAS  Google Scholar 

  18. Y. Nakao, H. Oshige, and S. Noi: Q. J. Jpn. Weld. Soc., 1985, vol. 3, pp. 766–73.

    CAS  Google Scholar 

  19. S. Suzuki, K. Bessyo, M. Toyoda, and F. Minami: Q. J. Jpn. Weld. Soc., 1995, vol. 13, pp. 302–08.

    CAS  Google Scholar 

  20. Evaluation Criterion of Rolled Steels Used for Low Temperature Application, WES Standard 3003, Japan Welding Engineering Society, Tokyo, Japan, 1983.

  21. S. Machida, N. Ishikura, N. Kubo, N. Katayama, Y. Hagiwara, and K. Arimochi: J. High Pressure Inst. Jpn., 1991, vol. 29, pp. 25–39.

    Google Scholar 

  22. K.K. Ray, S. Roy, A. Bhaduri, and S. Ray: Int. J. Fracture, 1995, vol. 70, pp. R3-R8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, JI., Lee, BW., Ju, JB. et al. Crack-initiation toughness and crack-arrest toughness in advanced 9 pct Ni steel welds containing local brittle zones. Metall Mater Trans A 33, 2615–2622 (2002). https://doi.org/10.1007/s11661-002-0383-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0383-z

Keywords

Navigation