Skip to main content
Log in

Interphase boundary structure with irrational orientation relationship formed in grain boundary precipitation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Interphase boundary structure of bcc precipitates formed at fcc-matrix grain boundaries in a Ni-43 mass pct Cr alloy has been studied experimentally using transmission electron microscopy (TEM) and theoretically analyzed using a geometrical model (near-coincidence site (NCS) lattice model). On both sides of the grain boundary, regardless of the presence of near-rational orientation relationship Kurdjumov-Sachs(K-S) or Nishiyama-Wassermann(N-W), precipitate(bcc)/matrix(fcc) interphase boundaries exhibit planar facets that often contain ledges and regularly aligned, line defects. The analysis indicates that the facet planes correspond to the planes of higher NCS densities for either of the near-rational orientation relationships or the irrational orientation relationships. Similar results are obtained for the precipitate/matrix interface, which lost its original orientation relationship through matrix recrystallization. It is suggested that some partial coherency is expected even for interfaces with an irrational orientation relationship formed during grain boundary precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.S. Smith: Trans. ASM, 1953, vol. 45, p. 533.

    CAS  Google Scholar 

  2. H.I. Aaronson and K.C. Russell: Proc. Int. Conf. on Solid-to-Solid Phase Transformations, TMS-AIME, Warrendale, PA, 1982, p. 371.

    Google Scholar 

  3. T. Furuhara and H.I. Aaronson: Acta Metall. Mater., 1991, vol. 39, p. 2887.

    Article  CAS  Google Scholar 

  4. T. Furuhara and T. Maki: Mater. Trans., JIM, 1992, vol. 33, p. 734.

    CAS  Google Scholar 

  5. Y. Mou and H.I. Aaronson: Acta Metall. Mater., 1994, vol. 42, p. 2159.

    Article  CAS  Google Scholar 

  6. J.F. Nie, B.C. Muddle, T. Furuhara, and H.I. Aaronson: Scripta Mater., 1998, vol. 39, p. 637.

    Article  CAS  Google Scholar 

  7. S.A. Hackney and G.J. Shiflet: Scripta Metall., 1985, vol. 19, p. 57.

    Article  Google Scholar 

  8. S.A. Hackney and G.J. Shiflet: Acta Metall., 1987, vol. 35, p. 1007.

    Article  CAS  Google Scholar 

  9. S.A. Hackney and G.J. Shiflet: Acta Metall., 1987, vol. 35, p. 1019.

    Article  CAS  Google Scholar 

  10. W. Bollman: Crystal Defects and Crystalline Interfaces, Springer-Verlag, New York, NY, 1970, p. 143.

    Google Scholar 

  11. U. Dahmen: Acta Metall., 1982, vol. 30, p. 63.

    Article  CAS  Google Scholar 

  12. J.M. Rigsbee and H.I. Aaronson: Acta Metall., 1979, vol. 27, p. 351.

    Article  CAS  Google Scholar 

  13. T. Furuhara and H.I. Aaronson: Acta Metall. Mater., 1991, vol. 39, p. 2857.

    Article  Google Scholar 

  14. Q. Liang and W.T. Reynolds, Jr.: Metall. Mater. Trans. A, 1998, vol. 29A, p. 2059.

    Article  CAS  Google Scholar 

  15. N. Miyano, K. Ameyama, and G.C. Weatherly: Iron Steel Inst. Jpn. Int., 2000, vol. 40, pp. S1999-S2003.

    Google Scholar 

  16. C.W. Bare, E.D. Gibson, and O.N. Carlson: Trans. AIME, 1964, vol. 230, p. 934.

    CAS  Google Scholar 

  17. C.P. Luo and G.C. Weatherly: Phil. Mag. A, 1988, vol. 58, p. 445.

    CAS  Google Scholar 

  18. T. Furuhara, K. Wada, and T. Maki: Metall. Mater. Trans., 1995, vol. 26A, p. 1971.

    CAS  Google Scholar 

  19. M.G. Hall, H.I. Aaronson, and K.R. Kinsman: Surf. Sci. A, 1972, vol. 31, p. 257.

    Article  CAS  Google Scholar 

  20. J.M. Rigsbee and H.I. Aaronson: Acta Metall., 1979, vol. 27, p. 365.

    Article  CAS  Google Scholar 

  21. T.B. Massalski: Acta Metall., 1958, vol. 6, p. 243.

    Article  CAS  Google Scholar 

  22. M.R. Plichta and H.I. Aaronson: Acta Metall., 1980, vol. 28, p. 1041.

    Article  CAS  Google Scholar 

  23. T. Furuhara, T. Ogawa, and T. Maki: Scripta Mater., 1996, vol. 34, p. 381.

    Article  CAS  Google Scholar 

  24. D. Vaughan: Acta Metall., 1970, vol. 18, p. 183.

    Article  CAS  Google Scholar 

  25. K. Ameyama, T. Maki, and I. Tamura: J. Jpn. Inst. Met., 1986, vol. 50, p. 502.

    Google Scholar 

  26. K. Amayama, M. Minagawa, T. Maki, and I. Tamura: Tetsu-to-Hagané, 1988, vol. 74, p. 602.

    Google Scholar 

  27. T. Furuhara, S. Takagi, H. Watanabe, and T. Maki: Metall. Mater. Trans. A, 1996, vol. 27A, p. 1630.

    Google Scholar 

  28. H. Fujiwara and K. Ameyama: J. Jpn. Inst. Met., 1999, vol. 63, p. 187.

    CAS  Google Scholar 

  29. T. Furuhara and T. Maki: Mater. Sci. Eng. A, 2001, vol. A312, p. 145.

    CAS  Google Scholar 

  30. J.K. Lee and H.I. Aaronson: Acta Metall., 1979, vol. 23, p. 799.

    Google Scholar 

  31. J.K. Lee and H.I. Aaronson: Acta Metall., 1979, vol. 23, p. 809.

    Google Scholar 

  32. M.R. Plichta, J.H. Perepezko, H.I. Aaronson, and W.F. Lange III: Acta Metall., 1980, vol. 28, p. 1034.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made at the symposium entitled “The Mechanisms of the Massive Transformation,” a part of the Fall 2000 TMS Meeting held October 16–19, 2000, in St. Louis, Missouri, under the auspices of the ASM Phase Transformations Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furuhara, T., Maki, T. & Oishi, K. Interphase boundary structure with irrational orientation relationship formed in grain boundary precipitation. Metall Mater Trans A 33, 2327–2335 (2002). https://doi.org/10.1007/s11661-002-0356-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0356-2

Keywords

Navigation