Skip to main content
Log in

The optimum wetting angle for the stabilization of liquid-metal foams by ceramic particles: Experimental simulations

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The stabilization of liquid-metal foams by ceramic particles is studied by experimental simulations. The objective is to determine the optimum wetting property for liquid-foam stability. Ceramic particles are mimicked by inert plastic particles. The liquid metal is mimicked by a continuous, surfactant-free ethanol-water solution. The wetting property of the plastic particles in the liquid solution is changed continuously by varying the liquid composition. The experimental simulation shows that the liquid-foam stabilization by the solid particles depends strongly on the wetting property. An optimum wetting-angle range of 75 to 85 deg is determined from the experiments. The foam stability is shown to be unrelated to liquid viscosity, which remains unchanged with the wetting angle. Foams formed in the optimum wetting condition exhibit a slow decay, a stable foam volume that persists for a long time, and a fine cell structure in the micrometer range. The selection of ceramic particles for optimal stabilization of liquid-metal foams and the foam-processing procedures are discussed in the light of these experimental simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. Ashby, A. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley: Metal Foams: A Design Guide, Butterworth-Heineman, Boston, MA, 2000.

    Google Scholar 

  2. J. Banhart: J. Met., 2000, vol. 12, p. 22.

    Google Scholar 

  3. A.G. Evans, J.W. Hutchinson, and M.F. Ashby: Curr. Opinion Solid State Mater. Sci., 1998, vol. 3, p. 288.

    Article  CAS  Google Scholar 

  4. V. Shapovalov: Mater. Res. Soc. Bull., 1994, vol. 4, p. 24.

    Google Scholar 

  5. D. Weaire and S. Hutzler: The Physics of Foams, Clarendon Press, Oxford, United Kingdom, 1999.

    Google Scholar 

  6. L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, NY, 1997.

    Google Scholar 

  7. L.J. Gibson: Ann. Rev. Mater. Res., 2000, vol. 30, p. 191.

    Article  CAS  Google Scholar 

  8. G.J. Davies and S. Zhen: J. Mater. Sci., 1983, vol. 18, p. 1899.

    Article  CAS  Google Scholar 

  9. J. Banhart and J. Baumeister: Proc. Materials Research Society, 1998, vol. 521, p. 121.

    CAS  Google Scholar 

  10. L.D. Zardiackas, D.E. Parsell, L.D. Dillon et al.: J. Biomed. Mater. Res., 2001, vol. 58, p. 180.

    Article  CAS  Google Scholar 

  11. M. Thomas, D. Kenny, and H. Sang: US Patent Database, Alcan International Limited, Ontario, Canada, 1997, vol. 5622542.

    Google Scholar 

  12. T. Miyoshi: in Metal Foams and Porous Metal Structures, J. Banhart, M.F. Ashby, and N.A. Fleck, eds., MIT Verlag, Bremen, 1999, p. 125.

    Google Scholar 

  13. J.J. Bikerman: Foams, Springer-Verlag, New York, NY, 1973.

    Google Scholar 

  14. F. Sebba: Foams and Biliquid Foams—Aphrons, John Wiley & Sons, Chichester, United Kingdom, 1987.

    Google Scholar 

  15. L. Ma and Z. Song: Scripta Mater., 1998, vol. 39, p. 1523.

    Article  CAS  Google Scholar 

  16. G. Johansson and R.J. Pugh: Int. J. Mineral Processing, 1992, vol. 34, p. 1.

    Article  CAS  Google Scholar 

  17. G. Kaptay: in Metal Foams and Porous Metal Structures, J. Banhart, M.F. Ashby, and N.A. Fleck, eds., MIT Verlag, Bremen, Germany, 1999, p. 141.

    Google Scholar 

  18. S.W. Ip, Y. Wang, and J.M. Toguri: Can. Metall. Q., 1999, vol. 38, p. 81.

    Article  CAS  Google Scholar 

  19. C. Yu, H.H. Eifert, J. Banhart and J. Baumeister: Adv. Mater. Processes, 1998, vol. 11, p. 45.

    Google Scholar 

  20. D.M. Elzey and H.N.G. Wadley: Acta Mater., 2001, vol. 49, p. 849.

    Article  CAS  Google Scholar 

  21. V. Shapovalov: in Porous and Cellular Materials for Structural Applications, D.S. Schwartz, ed., MRS, Warrendale, PA, 1998, vol. 521, p. 281.

    Google Scholar 

  22. J.R. Dann: J. Coll. Interface Sci., 1970, vol. 32, p. 302.

    Article  CAS  Google Scholar 

  23. G. Vazquez, E. Alvarez, and J.M. Navaza: J. Chem Eng. Data, 1995, vol. 40, p. 611.

    Article  CAS  Google Scholar 

  24. F. Tang, Z. Xiao, J. Tang, and L. Jiang: J. Coll. Interface Sci., 1989, vol. 131, p. 498.

    Article  CAS  Google Scholar 

  25. C. Monnereau, M. Vignes-Adler, and K. Kronberg: J. Chimie Phys., 1999, vol. 96, p. 958.

    Article  CAS  Google Scholar 

  26. O. Prakash, H. Sang, and J.D. Embury: Mater. Sci. Eng., 1995, vol. A199, p. 195.

    CAS  Google Scholar 

  27. J.K. Spelt and D. Li: in Applied Surface Thermodynamics, A.W. Neumann and J.K. Spelt, eds., Marcel Dekker, New York, NY, 1996.

    Google Scholar 

  28. V. Laurent, D. Chatain, and N. Eustathopoulos: J. Mater. Sci., 1987, vol. 22, p. 244.

    Article  CAS  Google Scholar 

  29. A. Adamson and A.P. Gast: Physical Chemistry of Surfaces, John Wiley & Sons, New York, NY, 1997.

    Google Scholar 

  30. L.E. Scriven and C.V. Sternling: Nature, 1960, vol. 187, p. 186.

    Article  Google Scholar 

  31. H. Kumagai, Y. Torikata, H. Yoshimura, M. Kato, and T. Yano: Agric. Biol. Chem., 1991, vol. 55 (7), p. 1823.

    CAS  Google Scholar 

  32. S. Ross and G. Nishioka: Foams, Proc. Symp. Society of Chemical Industry, Academic Press, London, 1976, p. 17.

    Google Scholar 

  33. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill, New York, NY, 1986.

    Google Scholar 

  34. B.P. Binks and O.S. Lumsdon: Langmuir, 2000, vol. 16, p. 8622.

    Article  CAS  Google Scholar 

  35. J.V. Naidich: Progr. Surf. Member Sci., 1981, vol. 14, p. 353.

    CAS  Google Scholar 

  36. W.D. Kingery, H.K. Bowen, and D.R. Uhlman: Introduction to Ceramics, John Wiley & Sons, New York, NY, 1976.

    Google Scholar 

  37. K. Nakashima, H. Matsumoto, and K. Mori: Acta Mater., 2000, vol. 48, p. 4677.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y.Q., Gao, T. The optimum wetting angle for the stabilization of liquid-metal foams by ceramic particles: Experimental simulations. Metall Mater Trans A 33, 3285–3292 (2002). https://doi.org/10.1007/s11661-002-0315-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0315-y

Keywords

Navigation