Skip to main content

Advertisement

Log in

Physical, fluid dynamic and mechanical properties of alumina gel-cast foams manufactured using agarose or ovalbumin as gelling agents

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Alumina gel-cast foams were manufactured in a broad total porosity range (43–86%) by using agarose or ovalbumin as gelling agents. The foams were examined in terms of microstructural, permeability, and mechanical properties. For the achieved open porosity level (19–85%), the mean cell size (19–375 µm), and mean window size (8–77 µm) of the alumina foams manufactured using ovalbumin were slightly wider than those obtained using agarose (34–262 µm and 18–33 µm, respectively). By using different contents of agarose (0.3–1 wt%) or albumin (5 wt%) and solids (30–45.9 wt%), it was possible to vary the foaming yield from 1.6 to 4.4 and produce bodies with a very wide permeability level that included several classes of porous ceramics. Darcian (k1) and non-Darcian (k2) permeability coefficients displayed values in the range 3.2 × 10−18 to 4.3 × 10−9 m2 and 1.8 × 10−18 to 6.5 × 10−5 m respectively. Compressive strength of bodies was dependent upon the porosity level, with a variation of 8.5–149.7 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M. Scheffler and P. Colombo, eds.: Cellular Ceramics: Structure, Manufacture, Properties and Applications (Wiley-VCH, Weinheim, 2005).

    Google Scholar 

  2. L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, United Kingdom, 1999); pp. 15–50.

    Google Scholar 

  3. R. Zhang, R. He, W. Zhou, Y. Wang, and D. Fang: Design and fabrication of porous ZrO2/(ZrO2 + Ni) sandwich ceramics with low thermal conductivity and high strength. Mater. Des. 14, 1–6 (2014).

    Article  CAS  Google Scholar 

  4. K. Schwartzwalder and A.V. Somers: Method of making porous ceramics articles. U.S. Patent No. 3 090 094, 1963.

  5. P. Sepulveda and J.G.P. Binner: Processing of cellular ceramics by foaming and in situ polymerisation of organic monomers. J. Eur. Ceram. Soc. 19 (12), 2059–2066 (1999).

    Article  CAS  Google Scholar 

  6. S. Komarneni, L. Pach, and R. Pidugu: Porous-alumina ceramics using bohemite and rice flour. Mater. Res. Soc. Symp. Proc. 371, 285–290 (1995).

    CAS  Google Scholar 

  7. P. Colombo and J.R. Hellmann: Ceramic foams from preceramic polymers. Mater. Res. Innovations 6, 260–272 (2002).

    Article  CAS  Google Scholar 

  8. T. Fujiu, G.L. Messing, and W. Huebner: Processing and properties of cellular silica synthesized by foaming sol–gels. J. Am. Ceram. Soc. 73, 85–90 (1990).

    Article  CAS  Google Scholar 

  9. D.J. Green: Fabrication and mechanical properties of lightweight ceramics produced by sintering of hollow spheres. J. Am. Ceram. Soc. 68, 403–409 (1985).

    Article  CAS  Google Scholar 

  10. M.D.M. Innocentini, P. Sepulveda, V.R. Salvini, and V.C. Pandolfelli: Permeability and structure of cellular ceramics: A comparison between two preparation techniques. J. Am. Ceram. Soc. 81 (12), 3349–3352 (1998).

    Article  CAS  Google Scholar 

  11. R. Brezny and D.J. Green: Fracture behavior of open-cell ceramics. J. Am. Ceram. Soc. 72 (7), 1145–1152 (1989).

    Article  CAS  Google Scholar 

  12. F.S. Ortega, P. Sepulveda, and V.C. Pandolfelli: Monomer systems for the gelcasting of foams. J. Eur. Ceram. Soc. 22, 1395–1401 (2002).

    Article  CAS  Google Scholar 

  13. M. Szafran, A. Szudarska, and P. Bednarek: New low-toxic water-soluble monomers for gelcasting of ceramic powders. Adv. Sci. Technol. 62, 163–168 (2010).

    Article  CAS  Google Scholar 

  14. A. Szudarska, T. Mizerski, and M. Szafran: Galactose monoacrylate as a new monomer in gelcasting process. Arch. Metall. Mater. 56, 1211–1215 (2011).

    Article  CAS  Google Scholar 

  15. S. Dhara, M. Pradhan, and P. Bhargava: Nature inspired novel processing routes for ceramic foams. Adv. Appl. Ceram. 104 (1), 9–21 (2005).

    Article  CAS  Google Scholar 

  16. S. Dhara and P. Bhargava: A simple direct casting route to ceramic foams. J. Am. Ceram. Soc. 86 (10), 1645–1650 (2003).

    Article  CAS  Google Scholar 

  17. A.F. Lemos and J.M.F. Ferreira: The valence of egg white for designing smart porous biomaterials: As foaming and consolidation agent. Key Eng. Mater. 254–256, 1045–1050 (2004).

    Google Scholar 

  18. I. Garrn, C. Reetz, N. Brandes, J.W. Kroh, and H. Schubert: Clot-forming: The use of proteins as binders for producing ceramic foams. J. Eur. Ceram. Soc. 24, 579–587 (2004).

    Article  CAS  Google Scholar 

  19. K. Prabhakaran, N.M. Gokhale, S.C. Sharma, and R. Lal: A novel process for low-density alumina foams. J. Am. Ceram. Soc. 88, 2600–2603 (2005).

    Article  CAS  Google Scholar 

  20. R. Mouazer, I. Thijs, S. Mullens, and J. Luyten: SiC foams produced by gelcasting: Synthesis and characterization. Adv. Eng. Mater. 6, 340–343 (2004).

    Article  CAS  Google Scholar 

  21. M. Potoczek: Gelcasting of alumina foams using agarose solutions. Ceram. Int. 34, 661–667 (2008).

    Article  CAS  Google Scholar 

  22. M. Potoczek: Hydroxyapatite foams produced by gelcasting using agarose. Mater. Lett. 62, 1055–1057 (2008).

    Article  CAS  Google Scholar 

  23. A. Cosijns, C. Vervaet, J. Luyten, S. Mullens, F. Siepmann, L. Van Hoorebeke, B. Masschaele, V. Cnudde, and J.P. Remon: Porous hydroxyapatite tablets as carriers for low-dosed drugs. Eur. J. Pharm. Biopharm. 67, 498–506 (2006).

    Article  CAS  Google Scholar 

  24. H. Ghomi, M.H. Fathi, and H. Edris: Effect of the composition of hydroxyapatite/bioactive glass nanocomposite foams on their bioactivity and mechanical properties. Mater. Res. Bull. 47, 3523–3532 (2012).

    Article  CAS  Google Scholar 

  25. I. Santacruz and R. Moreno: Preparation of cordierite materials with tailored porosity by gelcasting with polysaccharides. Int. J. Appl. Ceram. Technol. 5, 74–83 (2008).

    Article  CAS  Google Scholar 

  26. M. Potoczek, E. Guzi de Moraes, and P. Colombo: Ti2AlC foams produced by gelcasting. J. Eur. Ceram. Soc. 35, 2445–2452 (2015).

    Article  CAS  Google Scholar 

  27. L. Yin, X. Zhou, J. Yu, H. Wang, S. Zhao, Z. Luo, and B. Yang: New consolidation process inspired from making steamed bread to prepare Si3N4 foams by protein foaming method. J. Eur. Ceram. Soc. 33, 1387–1392 (2013).

    Article  CAS  Google Scholar 

  28. L. Stipniece, I. Narkevica, M. Sokolova, J. Locs, and J. Ozolins: Novel scaffolds based on hydroxyapatite/poly(vinyl alcohol) nanocomposite coated porous TiO2 ceramics for bone tissue engineering. Ceram. Int. 42, 1530–1537 (2016).

    Article  CAS  Google Scholar 

  29. F. Akhtar, L. Andersson, S. Ogunwumi, N. Hedin, and L. Bergström: Structuring adsorbents and catalysts by processing of porous powders. J. Eur. Ceram. Soc. 34, 1643–1666 (2014).

    Article  CAS  Google Scholar 

  30. C. Tallon, M. Yates, R. Moreno, and M.I. Nieto: Porosity of freeze-dried γ-Al2O3 powders. Ceram. Int. 33, 1165–1169 (2007).

    Article  CAS  Google Scholar 

  31. J. Binner, H. Chang, and R. Higginson: Processing of ceramic–metal interpenetrating composites. J. Eur. Ceram. Soc. 29, 837–842 (2009).

    Article  CAS  Google Scholar 

  32. J. Ligoda-Chmiel, M. Potoczek, and R.E. Śliwa: Mechanical properties of alumina foam/tri-functional epoxy resin composites with an interpenetrating network structure. Arch. Metall. Mater. 60, 2757–2762 (2015).

    Article  CAS  Google Scholar 

  33. M.D.M. Innocentini, J.R. Coury, M. Fukushima, and P. Colombo: High-efficiency aerosol filters based on silicon carbide foams coated with ceramic nanowires. Sep. Purif. Technol. 152, 180–191 (2015).

    Article  CAS  Google Scholar 

  34. C. Vakifahmetoglu, D. Zeydanli, M.D.M. Innocentini, F.S. Ribeiro, P.R.O. Lasso, and G.D. Soraru: Gradient-hierarchic-aligned porosity SiOC ceramics. Sci. Rep. 7, 41049 (2017).

    Article  CAS  Google Scholar 

  35. M.D.M. Innocentini, W.S. Chacon, R.F. Caldato, G.P. Rocha, and G.L. Adabo: Microstructural, physical, and fluid dynamic assessment of spinel-based and phosphate-bonded investments for dental applications. Int. J. Appl. Ceram. Technol. 52, 18362–18372 (2013).

    Google Scholar 

  36. S. Barg, M.D.M. Innocentini, R.V. Meloni, W.S. Chacon, H. Wang, D. Koch, and G. Grathwohl: Physical and high-temperature permeation features of double-layered cellular filtering membranes prepared via freeze casting of emulsified powder suspensions. J. Membr. Sci. 383, 35–43 (2011).

    Article  CAS  Google Scholar 

  37. M.D.M. Innocentini, R.K. Faleiros, R. Pisani, Jr., I. Thijs, J. Luyten, and S. Mullens: Permeability of porous gelcast scaffolds for bone tissue engineering. J. Porous Mater. 17, 615–627 (2010).

    Article  CAS  Google Scholar 

  38. M.D.M. Innocentini, V.P. Rodrigues, R.C.O. Romano, R.G. Pileggi, G.M. Silva, and J.R. Coury: Permeability optimization and performance evaluation of hot aerosol filters made using foam incorporated alumina suspension. J. Hazard. Mater. 162, 212–221 (2008).

    Article  CAS  Google Scholar 

  39. M.D.M. Innocentini, P. Sepulveda, and F.S. Ortega: Permeability. In Cellular Ceramics: Structure, Manufacture, Properties and Applications, M. Scheffler and P. Colombo, eds. (Wiley-VCH, Weinheim, 2005) pp. 313–341.

    Google Scholar 

  40. M.D.M. Innocentini, A.R.F. Pardo, V.R. Salvini, and V.C. Pandolfelli: How accurate is Darcy’s law for refractories. Am. Ceram. Soc. Bull. 78 (11), 64–68 (1999).

    CAS  Google Scholar 

  41. M.D.M. Innocentini, A.R.F. Pardo, V.R. Salvini, and V.C. Pandolfelli: Assessment of Forchheimer’s equation to predict the permeability of ceramic foams. J. Am. Ceram. Soc. 82 (7), 1945–1948 (1999).

    Article  CAS  Google Scholar 

  42. M.D.M. Innocentini, E.H. Tanabe, M.L. Aguiar, and J.R. Coury: Filtration of gases at high pressures: Permeation behavior of fiber-based media used for natural gas cleaning. Chem. Eng. Sci. 74, 38–48 (2012).

    Article  CAS  Google Scholar 

  43. D. Ruth and D.H. Ma: On the derivation of the Forchheimer equation by means of the averaging theorem. Transp. Porous Media 7, 255–264 (1992).

    Article  CAS  Google Scholar 

  44. D. Hlushkou and U. Tallarek: Transition from creeping via viscous-inertial to turbulent flow in fixed beds. J. Chromatogr. A 1126, 70–85 (2006).

    Article  CAS  Google Scholar 

  45. Z. Zeng and R. Grigg: A criterion for non-Darcy flow in porous media. Transp. Porous Media 63, 57–69 (2006).

    Article  CAS  Google Scholar 

  46. S. Ergun: Flow through packed columns. Chem. Eng. Prog. 48 (2), 89–94 (1952).

    CAS  Google Scholar 

  47. L. Biasetto, P. Colombo, M.D.M. Innocentini, and S. Mullens: Gas permeability of microcellular ceramic foams. Ind. Eng. Chem. Res. 46, 3366–3372 (2007).

    Article  CAS  Google Scholar 

  48. K. Okada, T. Isobe, K-i. Katsumata, Y. Kameshima, A. Nakajima, and K.J.D. MacKenzie: Porous ceramics mimicking nature—Preparation and properties of microstructures with unidirectionally oriented pores. Sci. Technol. Adv. Mater. 12 (6), 1–11 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work has been financially supported by the Faculty of Chemistry of Rzeszów University of Technology (U-594/DS) and by CNPq (Brazilian National Council for Scientific and Technological Development) under the project 303962/2015-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murilo Daniel de Mello Innocentini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Mello Innocentini, M.D., Rasteira, V.D., Potoczek, M. et al. Physical, fluid dynamic and mechanical properties of alumina gel-cast foams manufactured using agarose or ovalbumin as gelling agents. Journal of Materials Research 32, 2810–2818 (2017). https://doi.org/10.1557/jmr.2017.263

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.263

Navigation