Skip to main content
Log in

Normalized diagrams for micromechanical estimates of the elastic response of composite materials

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Normalized diagrams for the evaluation of the Young’s and shear moduli of elastic two-phase materials are presented. The diagrams allow the prediction of the overall elastic moduli of composites, considering the elastic properties, the volume fractions, and the microtopology of the constituents. Matrix-inclusion topologies with reinforcement by particles, fibers, and platelets, as well as interpenetrating morphologies and porous materials, can be analyzed. The diagrams are predicated upon well-known micromechanical models, such as the Hashin-Shtrikman (H-S) bounds, Mori-Tanaka methods, and classical self-consistent schemes (SCSs) that reflect the interaction of the constituents in inhomogeneous materials. Comparisons between predictions from the models and experimental results from the literature are performed to support the applicability of the approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Hashin and S. Shtrikman: J. Mech. Phys. Sol., 1963, vol. 11, pp. 127–40.

    Article  Google Scholar 

  2. R. Hill: J. Mech. Phys. Sol., 1965, vol. 13, pp. 213–22.

    Article  Google Scholar 

  3. B. Budiansky: J. Mech. Phys. Sol., 1965, vol. 13, pp. 223–27.

    Article  Google Scholar 

  4. T. Mori and K. Tanaka: Acta Metall., 1973, vol. 21, pp. 571–74.

    Article  Google Scholar 

  5. R.M. Christensen and K.H. Lo: J. Mech. Phys. Sol., 1979, vol. 27, pp. 315–30; J. Mech. Phys. Sol., 1968, vol. 34, p. 639.

    Article  CAS  Google Scholar 

  6. T. Mura: Micromechanics of Defects in Solids, Martinus Nijhoff, Dordrecht, 1987.

    Google Scholar 

  7. S. Nemat-Nasser and M. Hori: Micromechanics: Overall Properties of Heterogeneous Solids, North-Holland, Amsterdam, 1993.

    Google Scholar 

  8. J.R. Brockenbrough and S. Suresh: Scripta Metall. Mater., 1990, vol. 24, pp. 325–30.

    Article  CAS  Google Scholar 

  9. V. Tvergaard: Acta Metall. Mater., 1990, vol. 38, pp. 185–94.

    Article  CAS  Google Scholar 

  10. A.A. Gusev: J. Mech. Phys. Sol., 1997, vol. 45, pp. 1449–59.

    Article  Google Scholar 

  11. M. Bornert, C. Stolz, and A. Zaoui: J. Mech. Phys. Sol., 1996, vol. 44, pp. 307–31.

    Article  Google Scholar 

  12. P.K. Banerjee and D.P. Henry: Int. J. Sol. Struct., 1992, vol. 29, pp. 2423–40.

    Article  Google Scholar 

  13. J. Aboudi: Appl. Mech. Rev., vol. 42 (1989), pp. 193–221.

    Google Scholar 

  14. J.C. Michel, H. Moulinec, and P. Suquet: Comput. Meth. Appl. Mech. Eng., 1999, vol. 172, pp. 109–43.

    Article  Google Scholar 

  15. Z. Hashin: J. Appl. Mech., 1983, vol. 50, pp. 481–505.

    Article  Google Scholar 

  16. Z. Hashin and B.W. Rosen: J. Appl. Mech., 1964, vol. 31, pp. 223–32.

    Google Scholar 

  17. L.J. Walpole: J. Mech. Phys. Sol., 1966, vol. 14, pp. 289–301.

    Article  CAS  Google Scholar 

  18. Y. Benveniste: Mech. Mater., 1987, vol. 6, pp. 147–57.

    Article  Google Scholar 

  19. Y.H. Hwang, C.-F. Horng, S.-J. Lin, K.-S. Liu, and M.-T. Jahn: Mater. Sci. Technol., 1997, vol. 13 pp. 982–88.

    CAS  Google Scholar 

  20. G. Lubin: Handbook of Composites, Van Nostrand Reinhold, New York, NY, 1982.

    Google Scholar 

  21. Z. Hashin: J. Appl. Mech., 1962, vol. 29, pp. 143–50.

    CAS  Google Scholar 

  22. R.W. Zimmerman: Mech. Res. Comm., 1992, vol. 19, pp. 563–69.

    Article  Google Scholar 

  23. S. Torquato: Appl. Mech. Rev., 1991, vol. 44, pp. 37–75.

    Article  Google Scholar 

  24. H.J. Böhm and W. Han: Modell. Simul. Mater. Sci. Eng., 2001, vol. 9, pp. 47–65.

    Article  Google Scholar 

  25. A. Heredia: Ph.D. Thesis, ETSEIB, Universitat Politécnica de Catalunya, Barcelona, 1987.

    Google Scholar 

  26. R. Hill: J. Mech. Phys. Sol., 1964, vol. 12, pp. 199–212.

    Article  Google Scholar 

  27. L.M. Brown and W.M. Stobbs: Phil. Mag., 1971, vol. 23, pp. 1185–99.

    CAS  Google Scholar 

  28. O.B. Pedersen: Acta Metall., 1983, vol. 31, pp. 1795–1808.

    Article  CAS  Google Scholar 

  29. C. Huet, P. Navi, and P.E. Roelfstra: in Continuum Models and Discrete Systems, G.A. Maugin, ed., Longman, Harlow, United Kingdom, 1991, pp. 135–43.

    Google Scholar 

  30. M. Li, S. Ghosh, O. Richmond, H. Weiland, and T.N. Rouns: Mater. Sci. Eng., 1999, vol. A266, pp. 221–40.

    CAS  Google Scholar 

  31. G.J. Weng: Int. J. Eng. Sci., 1990, vol. 28, pp. 1111–20.

    Article  Google Scholar 

  32. J.D. Eshelby: Proc. R. Soc. London, 1957, vol. A241, pp. 376–96.

    Google Scholar 

  33. P.J. Withers: Phil. Mag., 1989, vol. A59, pp. 759–81.

    Google Scholar 

  34. J.S. Sirkis, A. Cheng, A. Dasgupta, and I. Pandelidis: J. Compos. Mater., 1994, vol. 28, pp. 784–99.

    CAS  Google Scholar 

  35. M.L. Dunn and H. Ledbetter: Acta Mater., 1997, vol. 45, pp. 3327–40.

    Article  CAS  Google Scholar 

  36. H.E. Pettermann, H.J. Böhm, and F.G. Rammerstorfer: Composites, 1997, vol. 28B, pp. 253–65.

    CAS  Google Scholar 

  37. B. Mlekusch: Compos. Sci. Technol., 1999, vol. 59, pp. 911–23.

    Article  CAS  Google Scholar 

  38. Y. Benveniste, G.J. Dvorak, and T. Chen: J. Mech. Phys. Sol., 1991, vol. 39, pp. 927–46.

    Article  Google Scholar 

  39. M. Ferrari: Mech. Mater., 1991, vol. 11, pp. 251–56.

    Article  Google Scholar 

  40. K. Muramatsu, A. Kawasaki, M. Taya, and R. Watanabe: Proc. 1st Int. Symp. on Functionally Gradient Materials, M. Yamanouchi, M. Koizumi, T. Hirai, and I. Shiota, eds., Functionally Gradient Materials Forum, Sendai, Japan, 1990, pp. 53–58.

    Google Scholar 

  41. T. Siegmund, E. Werner, and F.D. Fischer: Comput. Mater. Sci., 1993, vol. 1, pp. 234–41.

    Article  Google Scholar 

  42. A.C. Gavazzi and D.C. Lagoudas: Comput. Mech., 1990, vol. 7, pp. 12–19.

    Article  Google Scholar 

  43. M. Bornert, Ecole Polytechnique, Palaiseau, France, 2001.

    Google Scholar 

  44. D.J. Green, R.H.J. Hannink, and M.V. Swain: Transformation Toughening of Ceramics, CRC Press, Boca Raton, FL, 1989.

    Google Scholar 

  45. J.L. Chermant and F. Osterstock: J. Mater. Sci., 1976, vol. 11, pp. 1939–51.

    Article  CAS  Google Scholar 

  46. M.H. Poech and H.F. Fischmeister: Acta Metall. Mater., 1992, vol. 40, pp. 487–94.

    Article  CAS  Google Scholar 

  47. P.A. Karnezis, G. Durrant, and B. Cantor: Mater. Sci. Technol., 1998, vol. 14, pp. 97–107.

    CAS  Google Scholar 

  48. Engineer’s Guide to Composite Materials, J.W. Weeton, D.M. Peters, and K.L. Thomas, eds., ASM, Metals Park, OH, 1987.

  49. L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, United Kingdom, 1997.

    Google Scholar 

  50. R.M. Christensen: Int. J. Sol. Struct., 2000, vol. 37, pp. 105–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pettermann, H.E., Böhm, H.J. & Alcala, J. Normalized diagrams for micromechanical estimates of the elastic response of composite materials. Metall Mater Trans A 33, 3187–3199 (2002). https://doi.org/10.1007/s11661-002-0304-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0304-1

Keywords

Navigation