Skip to main content
Log in

Surface engineering of timet 550 with oxygen to form a rutile-based, wear-resistant coating

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Recently, a thermal oxidation (TO) technique has been successfully developed and applied to the titanium alloy Ti-6Al-4V. This TO technique produces a thin, hard, rutile-based, wear-resistant coating on the surface of the titanium alloy, thus significantly improving the tribological properties of the titanium alloy. In the present investigation, the same principle has been applied to the α+β high-strength titanium alloy Timet 550. A series of TO treatments have been carried out in air within the temperature range of 600 °C to 650 °C. This developed a rutile-based coating which greatly improved the tribological properties of Timet 550. Systematic characterization of the TO-treated surface was carried out using glow-discharge optical emission spectroscopy (GDS), X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution scanning electron microscopy (HR-SEM) techniques. Ball-on-disc friction testing was used to show the improvement in tribological properties for Timet 550 when TO treated. The sliding wear resistance of the TO treatment was investigated using an Amsler wear tester, utilizing a counterformal block-on-wheel configuration; the TO-treated Timet 550 was run against a carburized S156 steel with splash oil lubrication. It was found that the wear resistance of the TO-treated Timet 550 was greatly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Boyer, G. Welsch, and E.W. Collings: Materials Properties Handbook—Titanium Alloys, ASM INTERNATIONAL, Materials Park, OH, 1994.

    Google Scholar 

  2. H.B. Bomberger, F.H. Froes, and P.M. Morton: Titanium Technology: Present Status and Future Trends, F.H. Froes, D. Eylon, N.B. Bomberger, eds., The Titanium Development Association, Dayton, OH, pp. 1–17.

  3. E. Rabinowicz: Met. Progr., 1954, Feb., pp. 107–10.

  4. G.W. Rowe: Br. J. Appl. Phys., 1956, vol. 7, pp. 152–53.

    Article  Google Scholar 

  5. K.G. Budinski: Wear, 1991, vol. 151, pp. 203–17.

    Article  CAS  Google Scholar 

  6. K. Miyoshi and D.H. Buckley: ASLE Trans., 1982, vol. 27, pp. 15–23.

    Google Scholar 

  7. N. Ohmae, T. Okuyama, and T. Tsukizoe: Tribology Int., 1980, Aug., pp. 177–80.

  8. D.H. Buckley, T.J. Kuczkowski, and R.L. Johnson: NASA Lewis Research Centre, Ohio, NASA Technical Reports, NASA-TN-D-2671, March 1, 1965.

  9. F.D. Rosi, C.A. Dube, and B.H. Alexader: J. Met., 1952, Feb., No. 4, pp. 145–46.

  10. J.A. Greenwood and J.B.P. Williamson: Proc. Roy. Soc. London, A, 1966, vol. 295, p. 300.

    CAS  Google Scholar 

  11. D. Tabor: Proc. R. Soc. London, A, 1959, vol. 251, pp. 378–93.

    Article  CAS  Google Scholar 

  12. D. Hull and D.J. Bacon: Introduction to Dislocations, 3rd ed., Pergamon Press, Oxford, United Kingdom, 1984, p. 112.

    Google Scholar 

  13. P.D. Miller and J.W. Holladay: Wear, 1958, vol. 2 (59), pp. 133–40.

    Article  Google Scholar 

  14. E. Rabinowicz and E.P. Kingsbury: Met. Progr., 1955, May, pp. 112–14.

  15. F.M. Kutas and M.S. Misra: ASM Handbook, vol. 18, Friction, Lubrication and Wear Technology, ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 778–84.

    Google Scholar 

  16. S. Yerramareddy and S. Bahadur: Wear, 1992, vol. 157, pp. 243–62.

    Article  Google Scholar 

  17. H. Dong, A. Bloyce, P.H. Morton, and T. Bell: 8th World Conference on Titanium, Birmingham, UK, 1995, pp. 1999–2006.

  18. H. Dong and T. Bell: Wear, 2000, vol. 238, pp. 131–37.

    Article  CAS  Google Scholar 

  19. C. Coddet, A.M. Chaze, and G. Beranger: J. Mater. Sci., 1987, vol. 22, pp. 2969–74.

    Article  CAS  Google Scholar 

  20. H. Dong, A. Bloyce, and T. Bell: 10th Congr. of the IFHT, Brighton, United Kingdom, Sept. 1–5, 1996.

  21. Phase Diagrams of Binary Titanium Alloys, J.L. Murray, ed., ASM INTERNATIONAL, Metals Park, OH, 1987, p. 223.

    Google Scholar 

  22. H.L. Du, D.B. Datta, D.B. Lewis, and J.S. Burnell-Gray: Corr. Sci., 1994, vol. 36 (4) pp. 631–42.

    Article  CAS  Google Scholar 

  23. H. Dong: Ph.D. Thesis, University of Birmingham, United Kingdom, 1997.

    Google Scholar 

  24. S.J. Mori: J. Jpn. Soc. Tribol., 1991, vol. 36, pp. 130–34.

    CAS  Google Scholar 

  25. J.A. Davidson: Clin. Orthopaedics Related Res., 1993, vol. 294, pp. 361–78.

    Google Scholar 

  26. Z. Liu and G. Welsch: Metall. Trans. A, 1988, vol. 19A, pp. 527–42.

    CAS  Google Scholar 

  27. T. Hurlen: J. Inst. Met., 1960, vol. 89, pp. 128–36.

    CAS  Google Scholar 

  28. K.E. Wiedemann, R.N. Shenoy, and J. Unnam: Metall. Trans. A, 1987, vol. 18A, pp. 1503–10.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boettcher, C., Bell, T. & Dong, H. Surface engineering of timet 550 with oxygen to form a rutile-based, wear-resistant coating. Metall Mater Trans A 33, 1201–1211 (2002). https://doi.org/10.1007/s11661-002-0221-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0221-3

Keywords

Navigation