Skip to main content
Log in

Effect of residual carbon on the sintering process of M2 high speed steel parts obtained by a modified metal injection molding process

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this article, we present the evolution of the microstructure during sintering of M2 high speed steel (HSS) parts obtained by a modified powder injection molding (PIM) process, which uses a new binder system based on a thermosetting resin. The most important characteristics of this process is that molding is carried out at room temperature by pouring the slurry (resin and tool steel previously mixed) directly into the mold. The mold is then heated to the curing temperature of the resin. The best mixture of polymer and steel powders was 60 pct volume of metal powder. The resin was removed by thermal debinding. The sintering process was carried out under vacuum atmosphere. We tested different debinding temperatures in order to retain residual carbon in the samples coming from the thermal degradation of the polymer. The best results were obtained at low debinding temperature (300 °C). In this case, residual carbon had a beneficial effect, extending the sintering temperature range by 100 deg, making it possible to reach very high density at temperatures as low as 1100 °C. The mechanism of this densification seems to be via supersolidus liquid phase (SPLS). The microstructural study of sintered parts revealed a homogeneous distribution of carbides that change their morphology with increasing temperature. Besides spherical M6C carbides, which appear in all the temperature ranges studied, a new rodlike M2C carbide appears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. German: Powder Injection Molding, MPIF, Princeton, NJ, 1990, pp. 3–21.

    Google Scholar 

  2. R.M. German and A. Bose: Injection Molding of Metals and Ceramics, MPIF, Princeton, NJ, 1997.

    Google Scholar 

  3. J. Huggins: U.S. Patent 5,491,181, 1996.

  4. K. Menke: U.S. Patent 5,098,942, 1992.

  5. M.Y. Anwar, P.F. Messer, B. Ellis, and H.A. Davies: Powder Metall., vol. 38 (2), 1995, pp. 113–19.

    CAS  Google Scholar 

  6. K.F. Hens: U.S. Patent 5,332,537, 1994.

  7. S. Jauregi, F. Castro, and J.J. Urcola: Advances in Powder Metallurgy and Particulate Materials, MPIF, Princeton, NJ, 1996, vol. 19, pp. 193–206.

    Google Scholar 

  8. J.M. Torralba, J.M. Ruiz-Román, L.E.G. Cambronero, J.M. Ruiz-Prieto, and M. Gutierrez-Stampa: J. Mater. Process. Technol., 1997, vol. 64, pp. 387–95.

    Article  Google Scholar 

  9. H. Miura, H. Gondo, T. Honda, and T. Kono: Proc. Powder Metallurgy World Congr., 1993, pp. 273–76.

  10. Z.Y. Liu, N.H. Loh, K.A. Khor, and S.B. Tor: Mater. Sci. Eng. A, 2000, vol. 293, pp. 46–55.

    Article  Google Scholar 

  11. A.R. Erickson and R.E. Wiech, Jr.: Metals Handbook, 9th ed., vol. 7, Powder Metallurgy, ASM International Materials Park, OH, 1994.

    Google Scholar 

  12. R.M. German: Int. J. Powder Metall., 1990, vol. 26 (1), pp. 23–34.

    CAS  Google Scholar 

  13. A.S. Wronski, M.M. Rebbeck, C.S. Wright, W.J.C. Price, and T.H.C. Childs: Hard Materials Production 88, MPR Publishing Services, Shrewsbury, 1988, paper no. 22.

    Google Scholar 

  14. S. Jauregi, F. Fernández, R.H. Palma, V. Martínez, and J.J. Urcola: Metall. Trans. A, 1992, vol. 23A, pp. 389–400.

    CAS  Google Scholar 

  15. J.V. Bee, P.R. Brewin, P.D. Nurthern, and J.V. Wood: Met. Powder Rep., 1988, vol. 43, p. 177.

    Google Scholar 

  16. N.S. Myers and R.M. German: Int. J. Powder Metall., 1999, vol. 35 (6), pp. 45–51.

    CAS  Google Scholar 

  17. R. Wähling, P. Beiss, and J. Huppmann: Powder Metall., 1986, vol. 29, pp. 53–56.

    Google Scholar 

  18. R.G. Shephard, H.D.L. Harrison, and I.E. Russell: Powder Metall., 1973, vol. 16, pp. 200–19.

    CAS  Google Scholar 

  19. K.M. Kulkarni, A. Ashurt, and M. Svilar: Modern Developments in Powder Metallurgy, MPIF, Princeton, NJ, 1981, vol. 13, pp. 93–120.

    Google Scholar 

  20. J.S. Oh, Y.L. Kim, and H. Moon: J. Kor. Inst. Met., 1983, vol. 21, pp. 791–95.

    Google Scholar 

  21. W.J.C. Price, M.M. Rebbeck, A.S. Wronski, and S.A. Amen: Powder Metall., 1985, vol. 28, pp. 1–6.

    CAS  Google Scholar 

  22. C.S. Wright, B. Ogel, F. Lemoisson, and Y. Bienvenu: Powder Metall., 1995, vol. 38, p. 221.

    CAS  Google Scholar 

  23. I. Aguirre, S. Gimenez, S. Talacchia, T. Gómez-Acebo, and I. Iturriza: Powder Metall., 1999, vol. 42, pp. 353–57.

    Article  CAS  Google Scholar 

  24. B. Levenfeld, A. Gruzza, A. Várez, and J.M. Torralba: Spanish Patent No. P9,802,512, 1998.

  25. B. Levenfeld, A. Gruzza, A. Várez, and J.M. Torralba: Powder Metall., 2000, vol. 43 (3), pp. 233–37.

    Article  CAS  Google Scholar 

  26. A. Várez, J. Portuondo, B. Levenfeld, and J.M. Torralba: Mater. Chem. Phys., 2001, vol. 67, pp. 43–48.

    Article  Google Scholar 

  27. B. Levenfeld, A. Várez, L. Castro, and J.M. Torralba: J. of Mater. Process. Technol., 2001, vol. 119, pp. 1–6.

    Article  CAS  Google Scholar 

  28. C.S. Wright and B. Ogel: Powder Metall., 1993, vol. 36 (3), pp. 213–19.

    CAS  Google Scholar 

  29. G.D. Lawrence and G.S. Foerster: Met. Eng. Q., 1971, vol. 11 (3), p. 25.

    CAS  Google Scholar 

  30. J.S. Lee, W.A. Kaysser, and G. Petzow: Modern Developments in Powder Metallurgy, MPIF, Princeton, NJ, 1985, vol. 15, p. 489.

    Google Scholar 

  31. R.M. German: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1553–67.

    CAS  Google Scholar 

  32. P. Maulik and W.J.C. Price: Powder Metall., 1987, vol. 30 (4), pp. 240–48.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levenfeld, B., Várez, A. & Torralba, J.M. Effect of residual carbon on the sintering process of M2 high speed steel parts obtained by a modified metal injection molding process. Metall Mater Trans A 33, 1843–1851 (2002). https://doi.org/10.1007/s11661-002-0192-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0192-4

Keywords

Navigation