Skip to main content
Log in

Strength of Al-Zn-Mg-Cu matrix composite reinforced with SiC particles

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The AA7075 alloys reinforced with SiC and without SiC particles were fabricated by a pressureless infiltration method, and then, their tensile properties and microstructures were analyzed. The spontaneous infiltration of molten metal at 800 °C for 1 hour under a nitrogen atmosphere made it possible to fabricate 7075 Al matrix composite reinforced with SiC, as well as a control 7075 Al without SiC. A significant strengthening even in the control alloy occurred due to the formation of in-situ AlN particle even without an addition of SiC particles. Composite reinforced with SiC particles exhibited higher strength values than the control alloy in all aging conditions (underaged (UA), peak-aged (PA), and overaged (OA)), as well as a solution treated condition. Spontaneous infiltration was further prompted owing to the combined effect of both Mg and Zn. This may lead to an enhancement of wetting between the molten alloy and the reinforcement. Consequently, strength improvement in a composite may be attributed to good bond strength via enhancement of wetting. The grain size of the control alloy is greatly decreased to about 2.5 µm compared to 10 µm for the commercial alloy. In addition, the grain size in the composite is further decreased to about 2 µm. These grain refinements contributed to strengthening of the control alloy and the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mortensen and I. Jin: Int. Mater. Rev., 1992, vol. 37, pp. 101–28.

    CAS  Google Scholar 

  2. A. Ibrahim, F.A. Mohamed, and E.S. Lavernia: J. Mater. Sci., 1991, vol. 26, pp. 1137–56.

    Article  CAS  Google Scholar 

  3. M.J. Koczak and M.K. Premkumar: J. Metall., 1993, vol. 45, pp. 44–48.

    CAS  Google Scholar 

  4. R. Asthana: J. Mat. Sci., 1998, vol. 33, pp. 1679–98.

    Article  CAS  Google Scholar 

  5. M.K. Aghajanian, J.T. Burke, D.R. White, and A.S. Nagelberg: SAMPE Q, 1989, vol. 20 (4), pp. 43–46.

    CAS  Google Scholar 

  6. M.K. Aghajanian, M.A. Rocazella, J.T. Burke, and S.D. Keck: J. Mater. Sci., 1991, vol. 6, pp. 447–54.

    Article  Google Scholar 

  7. A.W. Urquhart: Adv. Mater. Process, 1991, July, pp. 25–29.

  8. A.W. Urquhart: Mater. Sci. Eng., 1991, vol. A144, pp. 75–82.

    CAS  Google Scholar 

  9. R.E. Everett and R.J. Arsenault: Metal Matrix Composites: Processing and interfaces, Academic Press, New York, NY, 1991, pp. 121–50.

    Google Scholar 

  10. M.K. Aghajanian, A.S. Nagelberg, and C.R. Kennedy: U.S. Patent 5,020,584.

  11. K.B. Lee and H. Kwon: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 3087–95.

    Article  CAS  Google Scholar 

  12. K.B. Lee and H. Kwon: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2999–3007.

    Article  CAS  Google Scholar 

  13. K.B. Lee, J.P. Ahn, and H. Kwon: Mater. Mater. Trans. A, 2001, vol. 32A, pp. 0000–00.

    Google Scholar 

  14. K.B. Lee, H.S. Sim, S.Y. Cho, and H. Kwon: Mater. Sci. Eng., 2001, vol. A302, pp. 227–34.

    CAS  Google Scholar 

  15. K.B. Lee, H.S. Sim, S.H. Kim, K.H. Han, and H. Kwon: J. Mater. Sci., 2001, vol. 36, pp. 3179–88.

    Article  CAS  Google Scholar 

  16. B. Maruyama and W.H. Hunt, Jr.: JOM, 1999, vol. 51 (11), pp. 59–64.

    Google Scholar 

  17. S.I. Hong, and G.T. Gray III: Acta Metall. Mater., 1992, vol. 40, pp. 3299–3315.

    Article  CAS  Google Scholar 

  18. M. Manoharan and J.J. Lewandowski: Acta Metall. Mater., 1990, vol. 38, pp. 489–96.

    Article  CAS  Google Scholar 

  19. M. Manoharan and J.J. Lewandowski: Mater. Sci. Eng., 1992, vol. A150, pp. 179–86.

    CAS  Google Scholar 

  20. J.K. Shang and R.O. Ritchie: Acta Metall., 1989, vol. 37, pp. 2267–78.

    Article  CAS  Google Scholar 

  21. N.V. Ravi Kumar and E.S. Dwarakadasa: Composites Part A, 2000, vol. 31, pp. 1139–45.

    Article  Google Scholar 

  22. M.C. Chou and C.H. Chao: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2005–12.

    CAS  Google Scholar 

  23. M.D. Kulkami, P.S. Robi, R.C. Prasad, and P. Ramakrishnan: Scripta Metall. Mater., 1994, vol. 31, pp. 237–42.

    Article  Google Scholar 

  24. W.M. Zhong, G. L’Espérance, and M. Suéry: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2637–50.

    CAS  Google Scholar 

  25. W.M. Zhong, G. L’Espérance, and M. Suéry: Mater. Sci. Eng., 1996, vol. A93, pp. 93–103.

    Google Scholar 

  26. C.H. Jin: Master’s Thesis, Kookmin University, Seoul, 2001.

    Google Scholar 

  27. F.J. Humphreys, W.S. Miller, and M.R. Djazeb: Mater. Sci. Technol., 1990, vol. 6, pp. 157–66.

    Google Scholar 

  28. M. Ferry, P. Monroe, A. Crosky, and T. Chandra: Mater. Sci. Technol., 1992, vol. 8, pp. 43–51.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K.B., Kwon, H. Strength of Al-Zn-Mg-Cu matrix composite reinforced with SiC particles. Metall Mater Trans A 33, 455–465 (2002). https://doi.org/10.1007/s11661-002-0106-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0106-5

Keywords

Navigation