Skip to main content
Log in

Predictive capabilities of the dislocation-network theory of Harper-Dorn creep

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The dislocation-network theory of Harper-Dorn (H-D) creep is reformulated using a new equation for the kinetics of growth of individual dislocation links in the network. The new kinetic equation has no impact on the scaled differential equation derived previously, which predicts the distribution of link lengths. However, the new theory predicts slightly different behavior for the kinetics of static recovery and leads to a new equation for the strain rate, which is expressed in terms of parameters that can be evaluated independently. This equation is valid not only for steady-state H-D creep, but is also valid for primary creep, provided the instantaneous value of the dislocation density is known. Using data on the variation of dislocation density with time, calculated values of the creep rates for Al deformed in the H-D regime agree with experimentally measured values to within a factor of 2. Creep curves for Al are calculated with the same degree of accuracy. These calculations involve no adjustable parameters. Steady-state creep rates for many materials presumably deformed in the H-D creep regime are compared with the predictions of the new equation for the strain rate. The calculated values agree with experimentally measured data to within a factor of about 150, which compares well with the predictions of other equations proposed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K. Mitra and D. McLean: Met. Sci. J., 1967, vol. 1, pp. 192–98.

    CAS  Google Scholar 

  2. H.E. Evans and G. Knowles: Acta Metall., 1977, vol. 25, pp. 963–75.

    Article  CAS  Google Scholar 

  3. J.H. Gittus: Acta Metall., 1978, vol. 26, pp. 305–17.

    Article  CAS  Google Scholar 

  4. J.D. Parker and B. Wilshire: Phil. Mag. A, 1980, vol. 41, pp. 665–80.

    CAS  Google Scholar 

  5. B. Burton: Phil. Mag. A, 1982, vol. 45, p. 657.

    CAS  Google Scholar 

  6. F.C. Burton: Symposium on Plastic Deformation Crystalline Solids, Carnegie Institute of Technology and Department of the Navy, ONR, Washington, DC, 1950, p. 100.

    Google Scholar 

  7. R. Lagneborg: Met. Sci. J., 1972, vol. 6, pp. 127–33.

    Article  CAS  Google Scholar 

  8. R. Lagneborg and B.-H. Forsen: Acta Metall., 1973, vol. 21, pp. 781–90.

    Article  CAS  Google Scholar 

  9. R. Lagneborg, B.-H. Forsen and J. Wiberg: Creep Strength in Steel and High-Temperature Alloys, The Metals Society, London, 1974, pp. 1–7.

    Google Scholar 

  10. P. Ostrom and R. Lagneborg: J. Eng. Mater. Technol. Trans. ASME, 1976, Ser. H, vol. 98, pp. 114–24.

    Google Scholar 

  11. P. Ostrom and R. Lagneborg: Res. Mech., 1980, vol. 1, pp. 59–79.

    Google Scholar 

  12. A.J. Ardell and M.A. Pizystupa: Mech. Mater., 1984, vol. 3, pp. 319–32.

    Article  Google Scholar 

  13. M.A. Przystupa and A.J. Ardell: in Deformation, Processing and Properties of Structural Materials, E.M. Taleff, C.K. Syn, and D.R. Lesuer, eds., TMS, Warrendale, PA, 2000, pp. 157–68.

    Google Scholar 

  14. P. Lin, S.S. Lee, and A.J. Ardell: Acta Metall., 1989, vol. 37, pp. 739–48.

    Article  CAS  Google Scholar 

  15. A.J. Ardell and S. Lee: Acta Metall., 1986, vol. 34, pp. 2411–33.

    Article  CAS  Google Scholar 

  16. A.J. Ardell: Acta Mater., 1997, vol. 45, pp. 2971–81.

    Article  CAS  Google Scholar 

  17. C. Wagner: Z. Elektrochem., 1961, vol. 65, p. 581.

    CAS  Google Scholar 

  18. M. Hillert: Acta Metall., 1965, vol. 13, pp. 227–38.

    Article  CAS  Google Scholar 

  19. A.J. Ardell and M.A. Przystupa: High Temp. Def. Processing, 1993, vol. 12, pp. 1–11.

    CAS  Google Scholar 

  20. H.E. Evans and G. Knowles: Acta Metall., 1977, vol. 25, pp. 963–75.

    Article  CAS  Google Scholar 

  21. J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed., Krieger Publishing Company, Malabar, FL, 1992, p. 570.

    Google Scholar 

  22. I.M. Lifshitz and V.V. Slyozov: Sov. Phys. JETP, 1959, vol. 35, pp. 331–39.

    Google Scholar 

  23. S.S. Lee: Ph.D. Dissertation, UCLA, Los Angeles, CA, 1985.

    Google Scholar 

  24. J.C.M. Li: Recrystallization, Grain Growth and Texture, ASM, Metals Park, Ohio, 1966, p. 45.

    Google Scholar 

  25. W. Hausselt and W. Blum: Acta Metall.. 1976, vol. 24, pp. 1027–39.

    Article  CAS  Google Scholar 

  26. F.A. Mohamed and T.G. Langdon: Metall. Trans., 1974, vol. 5, pp. 2339–45.

    CAS  Google Scholar 

  27. C.R. Barrett and O.D. Sherby: Trans. AIME, 1964, vol 230, p. 1322.

    Google Scholar 

  28. J.N. Wang and T.G. Langdon: Acta Metall. Mater., 1994, vol. 42, pp. 2487–92.

    Article  CAS  Google Scholar 

  29. J.N. Wang: Acta Mater., 1996, vol. 4, pp. 855–62.

    Google Scholar 

  30. O.A. Ruano, J. Wadsworth, and O.D. Sherby: Acta Metall., 1988, vol. 36, pp. 1117–28.

    Article  CAS  Google Scholar 

  31. O.A. Ruano, J. Wadsworth, and O.D. Sherby: Scripta Metall., 1988, vol. 22, pp. 1907–10.

    Article  CAS  Google Scholar 

  32. O.A. Ruano, J. Wolfenstine, J. Wadsworth, and O.D. Sherby: J. Am. Ceram. Soc., 1992, vol. 75, pp. 1737–41.

    Article  CAS  Google Scholar 

  33. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps, Pergamon Press, Oxford, United Kingdom, 1982.

    Google Scholar 

  34. C.R. Barrett, E.C. Muehleisen, and W.D. Nix: Mater. Sci. Eng., 1972, vol. 10, pp. 33–42.

    Article  CAS  Google Scholar 

  35. W.B. Banerdt and C.G. Sammis: Phys. Earth Planet. Interiors, 1985, vol. 41, pp. 108–24.

    Article  CAS  Google Scholar 

  36. J. Novotny, J. Fiala, and J. Cadek: Acta Metall., 1985, vol. 33, pp. 905–11.

    Article  CAS  Google Scholar 

  37. P.M. Sargent and M.F. Ashby: Scripta Metall., 1982, vol. 16, pp. 1415–22.

    Article  CAS  Google Scholar 

  38. K.S. Ramesh, E. Yasuda, and S. Kimura: J. Mater. Sci., 1986, vol. 21, pp. 3147–52.

    Article  CAS  Google Scholar 

  39. K.S. Ramesh, E. Yasuda, S. Kimura, and K. Urabe: J. Mater. Sci., 1986, vol. 21, pp. 4015–18.

    Article  CAS  Google Scholar 

  40. H. Jones and G.M. Leak: Acta Metall., 1966, vol. 14, pp. 21–27.

    Article  CAS  Google Scholar 

  41. R.G. Stang, W.D. Nix, and C.R. Barrett: Metall. Trans., 1973, vol. 4, pp. 1695–99.

    CAS  Google Scholar 

  42. P. Yavari, D.A. Miller, and T.G. Langdon: Acta Metall., 1982, vol. 30, pp. 871–79.

    Article  CAS  Google Scholar 

  43. G. Malakondaiah and P. Rama Rao: Scripta Metall., 1979, vol. 13, pp. 1187–90.

    Article  CAS  Google Scholar 

  44. D.L. Kohlstedt and C. Goetze: J. Geophys. Res., 1974, vol. 79, pp. 2045–51.

    Article  CAS  Google Scholar 

  45. M.G. Justice, Jr., E.K. Graham, R.E. Tressler, and I.S.T. Tsong: Geophys. Res. Lett., 1982, vol. 9, pp. 1005–08.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the workshop entitled “Mechanisms of Elevated Temperature Plasticity and Fracture,” which was held June 27–29, 2001, in San Diego, CA, concurrent with the 2001 Joint Applied Mechanics and Materials Summer Conference. The workshop was sponsored by Basic Energy Sciences of the United States Department of Energy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Przystupa, M.A., Ardell, A.J. Predictive capabilities of the dislocation-network theory of Harper-Dorn creep. Metall Mater Trans A 33, 231–239 (2002). https://doi.org/10.1007/s11661-002-0085-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0085-6

Keywords

Navigation