Skip to main content
Log in

Grain growth behavior of cryomilled INCONEL 625 powder during isothermal heat treatment

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nanocrystalline INCONEL 625 powders were fabricated via cryomilling (mechanical alloying under a liquid nitrogen environment), and their grain growth behavior during isothermal heat treatment was investigated in detail. The grain size after milling for 8 hours was approximately 22 nm, measured by transmission electron microscopy (TEM) observations and X-ray diffraction (XRD). Along with this refined structure, the NiO and Cr2O3 oxide particles were distributed in the cryomilled material with average size of 3 nm. Following heat treatment at 800 °C, correspond to T/T m = 0.65, for 4 hours, the grain size was approximately 240 nm, which represents an improved grain stability compared to that of conventional INCONEL 625 and cryomilled pure Ni. The improved grain stability of cryomilled INCONEL 625 is originated from a particle pinning effect by the oxide particles in addition to solute drag. The grain stability of the cryomilled powders at 900 °C was better than that at lower temperatures. This behavior was attributed to the formation of two types of secondary particles that precipitated at this temperature, which were identified as spherical NbC carbides and cylindrical-shaped Ni3Nb intermetallic precipitates. These precipitates promote grain growth resistance at this particular temperature via a grain-boundary pinning effect. Contribution of 30 pct Nb solute atoms in alloy on the forming precipitates on grain boundary, the grain growth will be restricted to approximately 200 nm, on the basis of a Zener mechanism. This calculation is in qualitative agreement with the experimental results. The observation that precipitation kinetics were accelerated over those of conventional INCONEL 625 was rationalized on the basis of the shortened diffusion paths and more nucleation sites available in the nanocrystalline materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Suryanarayana: Int. Mater. Res., 1995, vol. 40, pp. 41–64.

    CAS  Google Scholar 

  2. T. Mütschele and R. Kirchheim: Scripta Metall. Mater., 1987, vol. 21, pp. 1101–04.

    Google Scholar 

  3. H. Gleiter: Progr. Mater. Sci., 1989, vol. 33, pp. 223–315.

    Article  CAS  Google Scholar 

  4. C.C. Koch: Processing of Metals and Alloys; Materials Science and Technology, VCH, New York, NY, 1991, vol. 15, pp. 193–240.

    Google Scholar 

  5. N.P. Pao, H.J. Lee, M. Kelkar, D.J. Hansen, J.V.R. Heberlein, P.H. McMurray, and S.L. Girshick: Nanostr. Mater., 1997, vol. 9, pp. 129–32.

    Article  Google Scholar 

  6. J. Fernandez de la Mora, S.V. Hering, N.P. Rao, and P.H. McMurray: J. Aer. Sci., 1990, vol. 21, pp. 169–78.

    Article  Google Scholar 

  7. H. Hahn: Nanostr. Mater., 1997, vol. 9, pp. 3–12.

    Article  CAS  Google Scholar 

  8. L. Zhang, G.C. Papaefthymiou, R.F. Ziolo, and J.Y. Ying: Nanostr. Mater., 1997, vol. 9, pp. 185–88.

    Article  CAS  Google Scholar 

  9. D.J. Li, B.Z. Ding, B. Yao, Z.Q. Hu, A.M. Wang, S.L. Li, and W.D. Wei: Nanostr. Mater., 1994, vol. 4, pp. 323–28.

    Article  CAS  Google Scholar 

  10. T.R. Malow and C.C. Koch: Acta Metall. Mater., 1997, vol. 45, pp. 2177–86.

    CAS  Google Scholar 

  11. L.Z. Zhou and J.T. Guo: Scripta Metall. Mater., 1999, vol. 40, pp. 139–44.

    CAS  Google Scholar 

  12. R.J. Perez, B. Huang, and E.J. Lavernia: Nanostr. Mater., 1996, vol. 7, pp. 565–72.

    Article  CAS  Google Scholar 

  13. V.Y. Gerstman and R. Birringer: Scripta Mater., 1994, vol. 30, pp. 577–81.

    Article  Google Scholar 

  14. K. Lu: Scripta Metall. Mater., 1991, vol. 25, pp. 2047–52.

    Article  CAS  Google Scholar 

  15. K. Lu: Nanostr. Mater., 1993, vol. 2, pp. 643–52.

    Article  CAS  Google Scholar 

  16. U. Erb: Nanostr. Mater., 1995, vol. 5, pp. 513–23.

    Article  Google Scholar 

  17. S. Kawanishi, K. Isonishi, and K. Okazaki: Mater. Trans. JIM, 1993, vol. 34, pp. 49–53.

    CAS  Google Scholar 

  18. H. Gleiter: Acta Mater., 2000, vol. 48, pp. 1–29.

    Article  CAS  Google Scholar 

  19. R. Birringer: Mater. Sci. Eng. A, 1989, vol. A117, pp. 33–43.

    CAS  Google Scholar 

  20. B. Günther, A. Kumpmann, and H. Kunze: Scripta Metall. Mater., 1992, vol. 27, pp. 833–38.

    Article  Google Scholar 

  21. J. Weissmüller, J. Löffler, and M. Kleber: Nanostr. Mater., 1995, vol. 6, pp. 105–14.

    Article  Google Scholar 

  22. P. Knauth, A. Charal, and P. Gas: Scripta Metall. Mater., 1993, vol. 28, pp. 325–30.

    Article  CAS  Google Scholar 

  23. K. Boylan, D. Ostrander, U. Erb, G. Palumba, and K.T. Aust: Scripta Metall. Mater., 1991, vol. 25, pp. 2711–16.

    Article  CAS  Google Scholar 

  24. E. Rabkin: Scripta Metall. Mater., 2000, vol. 42, pp. 1199–1206.

    CAS  Google Scholar 

  25. F. Zhou, J. Lee, and E.J. Lavernia: Scripta Metall. Mater., 2001, vol. 44, pp. 1287–90.

    Google Scholar 

  26. J. Eckert, J.C. Holzer, and W.L. Johnson: J. Appl. Phys., 1993, vol. 73, pp. 2794–2802.

    Article  CAS  Google Scholar 

  27. H.J. Höffler and R.S. Averback: Scripta Metall. Mater., 1990, vol. 24, pp. 2401–06.

    Article  Google Scholar 

  28. C. Bansal, Z. Gao, and B. Fultz: Nanostr. Mater., 1990, vol. 5, pp. 327–36.

    Article  Google Scholar 

  29. M.J. Luton, C.S. Jayanth, M.M. Disko, S. Matras, and J. Vallone: in Multicomponent Untrafine Microstructures, L.E. McCandlish, ed., MRS, Pittsburgh, PA, 1989, vol. 132, pp. 79–85.

    Google Scholar 

  30. B. Huary, J. Vallone, and M.J. Luton: Nanostr. Mater., 1995, vol. 5, pp. 411–24.

    Article  Google Scholar 

  31. R. Perez, B. Huang, and E.J. Lavernia: Nanostr. Mater., 1996, vol. 7, pp. 565–72.

    Article  CAS  Google Scholar 

  32. H.G. Jiang, M.L. Lau, A. Fabel, and E.J. Lavernia: Nanostr. Mater., 1998, vol. 10, pp. 169–78.

    Article  CAS  Google Scholar 

  33. H.K. Kohl and K. Peng: J. Nucl. Mater., 1981, vol. 101, pp. 243–50.

    Article  CAS  Google Scholar 

  34. J. He and E.J. Lavernia: Mater. Sci. Eng. A, 2001, vol. 301, pp. 69–79.

    Article  Google Scholar 

  35. V.L. Tellkamp, M.L. Lau, A. Fabel, and E.J. Lavernia: Nanostr. Mater., 1997, vol. 9, pp. 489–92.

    Article  CAS  Google Scholar 

  36. D. Cheng, J. He, R. Rodrigues, and E.J. Lavernia: Proc. Surface Engineering in Materials Science I, TMS, Warrendale, PA, 2000, pp. 13–21.

    Google Scholar 

  37. C. Suryanarayana and H.G. Norton: X-ray Diffraction: A Practical Approach, Plenum Press, New York, NY, 1998, pp. 207–18.

    Google Scholar 

  38. H.G. Jiang, M. Ruhle, and E.J. Lavernia: J. Mater. Res., 1999, vol. 14, pp. 549–59.

    CAS  Google Scholar 

  39. C.S. Smith: Trans. AIME, 1948, vol. 178, pp. 15–22.

    Google Scholar 

  40. F.J. Humphreys and M. Hatherly: Recrystallization and Related Phenomena, Pergamon Press, Oxford, United Kingdom, 1995, pp. 309–12.

    Google Scholar 

  41. N.P. Louat: Acta Metall., 1974, vol. 22, pp. 721–24.

    Article  CAS  Google Scholar 

  42. E. Nes, N. Ryum, and O. Hunderi: Acta Metall. Mater., 1985, vol. 133, pp. 11–22.

    Article  Google Scholar 

  43. M. Hillert: Acta Metall., 1988, vol. 36, pp. 3177–81.

    Article  CAS  Google Scholar 

  44. M. Miodownik, E.A. Holm, and G.N. Hassold: Scripta Metall., 2000, vol. 42, pp. 1173–77.

    Article  CAS  Google Scholar 

  45. J. Weissmüller: Nanostr. Mater., 1993, vol. 3, pp. 261–72.

    Article  Google Scholar 

  46. J. Weissmüller: J. Mater. Res., 1994, vol. 9, pp. 4–7.

    Google Scholar 

  47. A. Michels, C. Krill, H. Erhardt, R. Birringer, and D.T. Wu: Acta Metall., 1999, vol. 47, pp. 2143–52.

    CAS  Google Scholar 

  48. R. Juza and W.Z. Sachsze: Anorg. Chem., 1943, vol. 251, pp. 201–08.

    Article  CAS  Google Scholar 

  49. D.J. Tillack, J.M. Manning, and J.R. Husleng: Metals Handbook, 9th ed., vol. 3, Heat Treating of Nickel and Nickel Alloys, ASM, Materials Park, OH, 1996, pp. 908–10.

    Google Scholar 

  50. L. Ferrer, B. Pieraggi, and J.F. Uginet: in Superalloys 718, 625 and Various Derivatives, E.A. Loria, ed., TMS, Warrendale, PA, 1991, pp. 217–28.

    Google Scholar 

  51. K. Köhler: in Superalloys 718, 625 and Various Derivatives, E.A. Loria, ed., TMS, Warrendale, PA, 1991, pp. 363–74.

    Google Scholar 

  52. S. Floreen, G.E. Fuchs, and W.J. Yang: in Superalloys 718, 625, 706 and Various Derivatives, E.A. Loria, ed., TMS, Warrendale, PA, 1994, pp. 13–37.

    Google Scholar 

  53. C. Suryanarayana, D. Mulchopadhyay, S.N. Patankar, and F.H. Froes: J. Mater. Res., 1992, vol. 7, pp. 2114–18.

    CAS  Google Scholar 

  54. E.A. Brandes and G.B. Brook: Smithells Metals Reference Book, 7th ed., Butterworth-Heinermann, Oxford, United Kingdom, 1992, pp. 8–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, K.H., Rodriguez, R., Lavernia, E.J. et al. Grain growth behavior of cryomilled INCONEL 625 powder during isothermal heat treatment. Metall Mater Trans A 33, 125–134 (2002). https://doi.org/10.1007/s11661-002-0011-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0011-y

Keywords

Navigation