Skip to main content
Log in

Microstructural instability and superplasticity in a Zr-2.5 Wt Pct Nb pressure-tube alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of microstructural evolution on superplastic deformation parameters, such as the nature of σ-ε plots, strain-rate sensitivity parameter, and activation energy, were studied for unstable and thermally stable microstructures of a Zr-2.5 wt pct Nb pressure-tube alloy. Two types of differential strain-rate tests (increasing temperature (IT) and decreasing temperature (DT), in the temperature range of 610 °C to 810 °C at 20 °C intervals) were conducted within a strain-rate range of 10−5 to 10−3 s−1. Single specimens were used to obtain the σ-ε plots for all the test temperatures in the aforementioned temperature range. The effect of orientation (with respect to the axial direction of the tube) on the superplastic deformation parameters was also studied. The microstructural evolution was studied along the three orthogonal planes of the tube by water quenching underformed samples in the beginning of differential strain-rate tests at each test temperature. The observed apparent activation-energy values associated with deformation were in the two distinct ranges of 287 to 326 and 151 to 211 kJ/mole. In the temperature range of 730 °C to 810 °C, the apparent activation-energy value depended on the direction of approach of the test temperature. The mechanisms of superplastic deformation in this alloy were found to be dislocation climb—controlled creep in region III and grain-boundary sliding accommodated by grain-boundary diffusion or lattice diffusion in the α or β phases in region II. Based on the observed microstructural features, a model to explain the σ-ε plots and apparent activation energy has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.D. Williams: Reactor Technol., 1970, vol. 13 (2), pp. 147–69.

    CAS  Google Scholar 

  2. E.F. Ibrahim and B.A. Cheadle: Can. Metall. Q., 1985, vol. 24 (3), pp. 273–81.

    CAS  Google Scholar 

  3. R.G. Fleck, V. Perovic, and E.T.C. Ho: Ontario Hydro Res. Rev., 1993, No. 8, pp. 1–14.

  4. B.A. Cheadle, C.E. Coleman, and H. Litcht: Nucl. Technol., 1982, vol. 57, pp. 413–25.

    CAS  Google Scholar 

  5. G.L. Miller: Zirconium, Butterworth Scientific Pub., London, 1957, pp. 186–205.

    Google Scholar 

  6. R.S. Ambartsumyan, A.A. Kiselev, R.V. Grebenmkov, V.A. Myshkin, L.S. Tsuprun, and A.F. Nikulina: 2nd United Nations Conf., Geneva, 1958, vol. 5, p. 12.

    CAS  Google Scholar 

  7. N.R. McDonald: J. Aust. Inst. Met., 1971, vol. 16 (4), pp. 179–94.

    CAS  Google Scholar 

  8. D.L. Douglass: The Metallurgy of Zirconium, Atomic Energy Review, International Atomic Energy Agency, Vienna, 1971, pp. 1–466.

    Google Scholar 

  9. R. Krishnan and M.K. Asundi: Proc. Ind. Acad. Sci. (Eng. Sci.), 1981, vol. 4, pp. 41–50.

    CAS  Google Scholar 

  10. “Kakrapar Atomic Power Station Safety Report: Accident Analysis Rev. 1,” 1996, Nuclear Power Corportion, A Government of India Enterprise, Bombay-94, vol. II, pp. 5.17–5.60.

  11. N.A. Makhutov, L.P. Fedorovich, A.V. Chirkin, B.G. Parfenov, and A.I. Tananov: Metallovedenie-i-Termicheskaya-Obrabotka-Metallov-USSR, 1982, No. 7, pp. 37–40.

  12. H.E. Rosinger and A.E. Unger: Report No. 6418 (AECL 6418), Dec. 1979, Atomic Energy of Canada Limited, Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada, pp. 1–36.

  13. K. Nuttall: Scripta Metall., 1976, vol. 10 (9), pp. 835–40.

    Article  CAS  Google Scholar 

  14. R.N. Singh, R. Kishore, T.K. Sinha, and B.P. Kashyap: Scripta Metall. Mater., 1993, vol. 28 (8), pp. 937–42.

    Article  CAS  Google Scholar 

  15. R.S.W. Shewfelt: Can. Metall. Q., 1984, vol. 23, pp. 441–45.

    CAS  Google Scholar 

  16. R.N. Singh, R. Kishore, T.K. Sinha, and B.P. Kashyap: Materials Science Forum, Proc. Int. Conf. on Superplasticity in Advanced Materials 1997, Bangalore, India, Jan. 29–31, 1977, Atul H. Chokshi, ed., Trans Tech Publications, Aedermannsdorf, Switzerland, 1997, vols. 243–45. pp. 499–504.

    Google Scholar 

  17. D. Srivastava, G.K. Dey, and S. Banerjee: Metall. Trans. A, 1995, vol. 26A, pp. 2707–18.

    CAS  Google Scholar 

  18. Binary Alloy Phase Diagram, 2nd ed., T.B. Massalski, ed., ASM INTERNATIONAL, 1992, vol. 3, pp. 2788–89.

  19. T.H. Courtney: Mechanical Behaviour of Materials, International ed., McGraw-Hill Book Co., Singapore, 1990, pp. 302–09.

    Google Scholar 

  20. S.V. Shukla, C. Chandrashekhrayya, R.N. Singh, R. Fotedar, R. Kishore, T.K. Sinha, and B.P. Kashyap: J. Nucl. Mater., 1999, vol. 273, pp. 130–38.

    Article  CAS  Google Scholar 

  21. M.G. Zelin and A.K. Mukherjee: Mater. Sci. Eng. A, 1996, vol. 208, pp. 210–25.

    Article  Google Scholar 

  22. K. Matsuki, H. Morita, M. Yamada, and Y. Murakami: Met. Sci., 1977, vol. 11, pp. 156–63.

    CAS  Google Scholar 

  23. T.L. Spingarn and W.D. Nix: Acta Metall., 1978, vol. 26, pp. 1389–98.

    Article  CAS  Google Scholar 

  24. R.C. Gifkins: Metall. Trans. A, 1976, vol. 7A, pp. 1225–32.

    CAS  Google Scholar 

  25. M. Surrey and B. Baudlet: Res. Mechanica, 1981, vol. 2, pp. 163–73.

    Google Scholar 

  26. George E. Dieter: Mechanical Metallurgy, SI Metric ed., McGraw-Hill Book Co. New York, NY, 1988, pp. 127–30.

    Google Scholar 

  27. N.E. Paton and C.H. Hamilton: Metall. Trans. A, 1979, vol. 10A, pp. 241–50.

    CAS  Google Scholar 

  28. A.M. Garde, H.M. Chung, and T.F. Kassner: Acta Metall., 1978, vol. 26 (1), pp. 153–66.

    Article  CAS  Google Scholar 

  29. K.L. Murty, B.V. Tanikella, and J.C. Earthman: Acta Metall. Mater., 1994, vol. 42 (11), pp. 3653–61.

    Article  CAS  Google Scholar 

  30. Richard W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 2nd ed., John Wiley & Sons, New York, NY, 1983, pp. 154–58.

    Google Scholar 

  31. M.J. Iribarren and F. Dyment: J. Nucl. Mater., 1989, vol. 161, pp. 148–52.

    Article  CAS  Google Scholar 

  32. R. Piotrkowski: J. Nucl. Mater., 1991, vol. 183, pp. 221–25.

    Article  CAS  Google Scholar 

  33. J.J. Kearns, J.E. McCauley, and F.A. Nichols: J. Nucl. Mater., 1976, vol. 61, pp. 169–84.

    Article  CAS  Google Scholar 

  34. B.P. Kashyap, R. Pathak, K. Narasimhan, R. Kishore, R.K. Fotedar, and T.K. Sinha: J. Mater. Sci., 1999, vol. 34, pp. 645–51.

    Article  CAS  Google Scholar 

  35. L. Briottet, J.J. Jonas, and E. Montheillet: Acta Metall., 1996, vol. 44, pp. 1665–72.

    Google Scholar 

  36. Binary Alloy Phase Diagram, 2nd ed. T.B. Massalski, ed., ASM INTERNATIONAL, Metal Parks, OH, 1992, pp. 2940–41.

    Google Scholar 

  37. K. Duong and F.A. Mohamed: Acta Mater., 1998, vol. 46 (13), pp. 4571–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R.N., Kishore, R., Sinha, T.K. et al. Microstructural instability and superplasticity in a Zr-2.5 Wt Pct Nb pressure-tube alloy. Metall Mater Trans A 32, 2827–2840 (2001). https://doi.org/10.1007/s11661-001-1033-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-1033-6

Keywords

Navigation