Skip to main content

Advertisement

Log in

Comparison of the fatigue and fracture of α+β and β titanium alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present study compares the fatigue and fracture properties of the high-strength β titanium alloy β-Cez with the conventional α+β titanium alloy Ti-6Al-4V, because of increasing interest in replacing α+β titanium alloys with β titanium alloys for highly stressed airframe and jet engine components. This comparison study includes the Ti-6Al-4V alloy in an α+ β-processed condition (for a typical turbine blade application) and the β-Cez alloy in two distinctly different α+β-processed and β-processed conditions (optimized for a combination of superior strength, ductility, and fracture toughness). The comparison principally showed a much lower yield stress for Ti-6Al-4V (915 MPa) than for both β-Cez conditions (1200 MPa). The Ti-6Al-4V material also showed the significantly lower high-cycle fatigue strength (resistance against crack initiation) of 375 MPa (R=−1) as compared to the β-Cez alloy (∼600 MPa, R=−1). Particularly in the presence of large cracks (>5 mm), the fatigue crack growth resistance and fracture toughness of the Ti-6Al-4V material is superior when compared to both β-Cez conditions. However, for small crack sizes, the conditions of both the alloys under study show equivalent resistance against fatigue crack growth. For the β-Cez material, where microstructures were optimized for high fracture toughness (conventional large crack sizes) by thermomechanical processing, maximum K Ic-values of 68 MPa√m of the β-processed β-Cez condition (tested in the longitudinal direction) decreased by ∼50 pct in the presence of small cracks (1 mm). A similar decrease in fracture toughness was obtained by loading the β-processed β-Cez condition perpendicular to the flat surfaces of the pancake-shaped β grain structure (tested in the short transverse direction). These results were discussed in terms of the effectiveness of the crack front geometry in hindering crack propagation. Further, the results of this study were considered for alloy selection and optimized microstructures for fatigue and fracture critical applications. Finally, the advantage of the α+β-processed β-Cez condition in highly stressed engineering components is pointed out because of its overall superior combination of fatigue crack initiation and propagation resistance (especially against small fatigue cracks).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beta Titanium Alloys in the 80’s, R.R. Boyer and H.W. Rosenberg, eds., AIME, Warrendale, PA, 1984.

    Google Scholar 

  2. Beta Titanium Alloys in the 1990’s, D. Eylon, R.R. Boyer, and D.A. Koss, eds., TMS, Warrendale, PA, 1993.

    Google Scholar 

  3. Beta Titanium Alloys, A. Vassel, D. Eylon, and Y. Combres, eds., Editions de la Revue de Métallurgie, Paris, 1994.

    Google Scholar 

  4. T.K. Redden: in Beta Titanium Alloys in the 80’s. R.R. Boyer and H.W. Rosenberg, eds., AIME, Warrendale, PA, 1984, pp. 239–54.

    Google Scholar 

  5. H.W. Rosenberg: in Beta Titanium Alloys in the 80’s, R.R. Boyer and H.W. Rosenberg, eds., AIME, Warrendale, PA, 1984, pp. 433–39.

    Google Scholar 

  6. J.C. Williams: Mater. Sci. Eng. A, 1999, vol. A263, pp. 107–11.

    CAS  Google Scholar 

  7. S.M. Russ: Proc. 5th Nat. Turbine Engine HCF Conf., CD Rom, Session 7, Materials Damage Tolerance III, AFRL/PRT, Wright-Patterson AFB, OH, 2000, pp. 45–53.

    Google Scholar 

  8. R.R. Boyer: Mater. Sci. Eng. A, 1996, vol. A213, pp. 103–14.

    CAS  Google Scholar 

  9. D. Eylon: “Summary of the Available Information on the Processing of the Ti-6Al-4V HCF/LCF Program Plates,” University of Dayton Report, Dayton, OH, 1998.

  10. B. Prandi, E. Alheritiere, F. Schwartz, and M. Thomas: Proc. 6th World Conference on Titanium, P. Lacombe, R. Tricot, and G. Beranger, eds., 1988, pp. 811–18.

  11. Y. Combres and B. Champin: in Beta Titanium Alloys in the 1990’s, D. Eylon, R.R. Boyer, and D.A. Koss, eds., TMS, Warrendale, PA, 1993, pp. 27–38.

    Google Scholar 

  12. in Metals Properties Handbook: Titanium Alloys, R.R. Boyer, G. Welsch, and E.W. Collings, eds., ASM INTERNATIONAL, Materials Park, OH, 1994, pp. 931–34.

    Google Scholar 

  13. R.O. Ritchie and J. Lankford: Mater. Sci. Eng., 1986, vol. 84, pp. 11–16.

    Article  Google Scholar 

  14. M.A. Hicks and A.C. Pickard: Mater. Sci. Eng. A, 1988, vol. A103, pp. 43–48.

    Article  CAS  Google Scholar 

  15. B. Wiltshire and J.F. Knott: Int J. Fracture, 1980, vol. 16, pp. R19-R26.

    Article  CAS  Google Scholar 

  16. G. Lütjering, J.O. Peters, and J. Albrecht: Int. Symp. on designing, Processing and Properties of Advanced Engineering Materials, JSPS AEM 156, Tokyo, 1997, pp. 56–67.

  17. D.F. Horne: Aircraft Production Technology, Cambridge University Press, Cambridge, United Kingdom, 1986.

    Google Scholar 

  18. D. Helm: in Fatigue Behavior of Titanium Alloys, R.R. Boyer, D. Eylon, and G. Lütjering, eds., TMS, Warrendale, PA, 1999, pp. 291–98.

    Google Scholar 

  19. J.C. Williams: in High Performance Materials in Aerospace, H.M. Flower, ed., Chapman & Hall, London, 1995, pp. 105–23.

    Google Scholar 

  20. P.E. Mosser, N. Marnier, and Y. Honorat: Titanium ’92, Science and Technology, Proc. 7th World Conf. on Titanium, F.H. Froes and J. Caplan, eds., TMS, Warrendale, PA, 1993, pp. 1338–46.

    Google Scholar 

  21. P.J. Bania: in Beta Titanium Alloys in the 1990’s, D. Eylon, R.R. Boyer, and D.A. Koss, eds., TMS, Warrendale, PA, 1993, pp. 3–14.

    Google Scholar 

  22. Y. Combres and B. Champin: Mater. Tech., 1991, pp. 31–41.

  23. J.O. Peters, G. Lütjering, M. Koren, H. Puschnik, and R.R. Boyer: Mater. Sci. Eng. A, 1996, vol. A213, pp. 71–80.

    CAS  Google Scholar 

  24. J.O. Peters, G. Lütjering, M. Koren, H. Puschnik, and R.R. Boyer: in Advances in the Science and Technology of Titanium Alloy Processing, TMS, Warrendale, PA, 1997, pp. 379–86.

    Google Scholar 

  25. J.C. Williams and G. Lütjering: in Titanium ’80, Science and Technology, H. Kimura and O. Izumi, eds., TMS-AIME, Warrendale, PA, 1980, vol. 1, pp. 671–81.

    Google Scholar 

  26. M. Peters and G. Lütjering: Z. Metallkd., 1976, vol. 67 (H12), pp. 811–14.

    CAS  Google Scholar 

  27. M. Niinomi and T. Kobayashi: Mater. Sci. Eng. A, 1996, vol. A213, pp. 16–24.

    CAS  Google Scholar 

  28. J.A. Hines, J.O. Peters, and G. Lütjering: in Fatigue Behavior of Titanium Alloys, R.R. Boyer, D. Eylon, and G. Lütjering, eds., TMS, Warrendale, PA, 1999, pp. 15–22.

    Google Scholar 

  29. S. Suresh and R.O. Ritchie: Int. Met. Rev., 1984, vol. 29 (6), pp. 445–76.

    Google Scholar 

  30. R.P. Gangloff and R.O. Ritchie: Fundamentals of Deformation and Fracture, Eshelby Memorial Symp., B.A. Bilby, K.J. Miller, and J.R. Willis, eds., Cambridge University Press, Cambridge, United Kingdom, 1985, pp. 529–58.

    Google Scholar 

  31. The Behaviour of Short Fatigue Cracks, K.J. Miller and E.R. de los Rios, eds., Mechanical Engineering Publ., London, 1986.

    Google Scholar 

  32. Small Fatigue Cracks, R.O. Ritchie and J. Lankford, eds., TMS-AIME, Warrendale, PA, 1986.

    Google Scholar 

  33. Small Fatigue Cracks: Mechanics, Mechanisms and Applications, K.S. Ravichandran, R.O. Ritchie, and Y. Murakami, eds., Elsevier, Oxford, United Kingdom, 1999.

    Google Scholar 

  34. J.O. Peters, O. Roder, B.L. Boyce, A.W. Thompson, and R.O. Ritchie: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1571–83.

    Article  CAS  Google Scholar 

  35. R.O. Ritchie and J.O. Peters: Mater. Trans., JIM, Japan Institute of Metals, Tokyo, Japan, 2001, [vol. 42 (1)], pp. 58–67.

    Google Scholar 

  36. J.C. Newman and I.S. Raju: Eng. Fract. Mech., 1981, vol. 15, pp. 185–92.

    Article  Google Scholar 

  37. R.O. Ritchie: Mater. Sci. Eng. A, 1988, vol. A103, pp. 15–28.

    Article  CAS  Google Scholar 

  38. G. Lütjering, A. Gysler, and L. Wagner: Proc. 6th World Conf. Titanium, P. Lacombe, R. Tricot, and G. Beranger, eds., 1988, Les éditions de physiques, Les Ulis, Cedex, France, pp. 71–80.

    Google Scholar 

  39. S. Suresh: Metall. Trans. A, 1983, vol. 14A, pp. 1983–2375.

    Google Scholar 

  40. J.O. Peters and G. Lütjering: Z. Metallkd., 1998, vol. 89, pp. 464–73.

    CAS  Google Scholar 

  41. G. Terlinde and G. Fischer: Titanium ’95: Science and Technology, Proc. 8th World Conf. on Titanium, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., The Institute of Materials, London, 1996, pp. 2177–94.

    Google Scholar 

  42. T.W. Duerig and J.C. Williams: in Beta Titanium Alloys in the 80’s, R.R. Boyer and H.W. Rosenberg, eds., AIME, Warrendale, PA, 1984, pp. 19–67.

    Google Scholar 

  43. T.W. Duerig, J.E. Allison, and J.C. Williams: Metall. Trans. A, 1985, vol. 16A, pp. 739–51.

    CAS  Google Scholar 

  44. F.A. McClintock and G.R. Irwin: Fracture Toughness Testing and Its Applications, ASTM STP 381, ASTM, Philadelphia, PA, 1965, pp. 84–113.

    Google Scholar 

  45. R.O. Ritchie: Met. Sci., 1977, vol. 11, pp. 368–81.

    Article  CAS  Google Scholar 

  46. I. Altenberger, J.M. McNaney, J.O. Peters, and R.O. Ritchie: University of California at Berkeley, Berkeley, CA, unpublished research, 2000.

  47. M. Shiratori, T. Miyoshi, Y. Sakai, and G.R. Zhang: in Stress Intensity Factors Handbook, Y. Murakami, ed, Pergamon Press, New York, NY, 1987, pp. 659–65.

    Google Scholar 

  48. R. Sanguinetti and E. Gautier: in Beta Titanium Alloys, A. Vassel, D. Eylon, and Y. Combres, eds., Editions de la Revue de Métallurgie, Paris, 1994, pp. 93–100.

    Google Scholar 

  49. E. Gautier and D. Delannoy: in Beta Titanium Alloys, A. Vassel, D. Eylon, and Y. Combres, eds., Editions de la Revue de Métallurgie, Paris, 1994, pp. 49–56.

    Google Scholar 

  50. A.-M. Chaze and F. Montheillet: in Beta Titanium Alloys, A. Vassel, D. Eylon, and Y. Combres, eds., Editions de la Revue de Métallurgie, Paris, 1994, pp. 41–48.

    Google Scholar 

  51. J.O. Peters and R.O. Ritchie: Eng. Fract. Mech., 2000, vol. 67, pp. 193–207.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, J.O., Lütjering, G. Comparison of the fatigue and fracture of α+β and β titanium alloys. Metall Mater Trans A 32, 2805–2818 (2001). https://doi.org/10.1007/s11661-001-1031-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-1031-8

Keywords

Navigation