Skip to main content
Log in

Corrosion Fatigue of High-Strength Titanium Alloys Under Different Stress Gradients

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ti-6Al-4V is the most widely used high strength-to-mass ratio titanium alloy for advanced engineering components. Its adoption in the aerospace, maritime, automotive, and biomedical sectors is encouraged when highly stressed components with severe fatigue loading are designed. The extents of its applications expose the alloy to several aggressive environments, which can compromise its brilliant mechanical characteristics, leading to potentially catastrophic failures. Ti-6Al-4V stress-corrosion cracking and corrosion-fatigue sensitivity has been known since the material testing for pressurized tanks for Apollo missions, although detailed investigations on the effects of harsh environment in terms of maximum stress reduction have been not carried out until recent times. In the current work, recent experimental results from the authors’ research group are presented, quantifying the effects of aggressive environments on Ti-6Al-4V under fatigue loading in terms of maximum stress reduction. R = 0.1 axial fatigue results in laboratory air, 3.5 wt.% NaCl solution, and CH3OH methanol solution at different concentrations are obtained for mild notched specimens (K t = 1.18) at 2e5 cycles. R = 0.1 tests are also conducted in laboratory air, inert environment, 3.5 wt.% NaCl solution for smooth, mild and sharp notched specimens, with K t ranging from 1 to 18.65, highlighting the environmental effects for the different load conditions induced by the specimen geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Lütjering and J.C. Williams, Titanium, 2nd ed. (Berlin: Springer, 2007).

    Google Scholar 

  2. B. Brown, Stress Corrosion Cracking in High Strength Steels and in Titanium and Aluminum Alloys (Washington: Naval Research Laboratory, 1972).

    Google Scholar 

  3. A. Aladjem, J. Mater. Sci. 8, 688 (1973).

    Article  Google Scholar 

  4. M.K. Dimah, F. Devesa Albeza, V. Amigó Borrás, and A. Igual Muñoz, Wear 294–295, 409 (2012).

    Article  Google Scholar 

  5. I. Gurrappa, Mater. Charact. 51, 131 (2003).

    Article  Google Scholar 

  6. R.R. Boyer, Mater. Sci. Eng. A 213, 103 (1996).

    Article  Google Scholar 

  7. R. Ritchie, B. Boyce, J. Campbell, O. Roder, A. Thompson, and W. Milligan, Int. J. Fatigue 21, 653 (1999).

    Article  Google Scholar 

  8. D. Lanning, G. Haritos, and T. Nicholas, Int. J. Fatigue 21, S87 (1999).

    Article  Google Scholar 

  9. D.B. Lanning, T. Nicholas, and G.K. Haritos, Int. J. Fatigue 27, 45 (2005).

    Article  Google Scholar 

  10. H. Knobbe, P. Köster, H.-J. Christ, C.-P. Fritzen, and M. Riedler, Procedia Eng. 2, 931 (2010).

    Article  Google Scholar 

  11. M. Niinomi, Mater. Sci. Eng. A 243, 231 (1998).

    Article  Google Scholar 

  12. R.A. Zavanelli, G.E. Pessanha Henriques, I. Ferreira, and J.M.D. de Almeida Rollo, J. Prosthet. Dent. 84, 274 (2000).

    Article  Google Scholar 

  13. R. Schutz and H. Watkins, Mater. Sci. Eng. A 243, 305 (1998).

    Article  Google Scholar 

  14. S.P. Trasatti and E. Sivieri, Mater. Chem. Phys. 92, 475 (2005).

    Article  Google Scholar 

  15. R.E. Johnson, DMIC Memorandum 228 (Columbus: Battelle Memorial Institute, 1967).

    Google Scholar 

  16. R.L. Johnston, R.E. Johnson, M. Glenn, and W.L. Castner, Stress-Corrosion Cracking of Ti-6Al-4V in Methanol (Washington: NASA, 1967).

    Google Scholar 

  17. C. Chen, H. Kirkpatrick, and H. Gegel, Stress Corrosion Cracking of Titanium Alloys in Methanolic and Other Media (Ohio: Air Force Materials Laboratory, Wright-Patterson AFB, 1972).

    Google Scholar 

  18. G. Sanderson and J.C. Scully, Corros. Sci. 8, 541 (1968).

    Article  Google Scholar 

  19. G. Sanderson, D.T. Powell, and J.C. Scully, Corros. Sci. 8, 473 (1968).

    Article  Google Scholar 

  20. D.B. Dawson and R.M. Pelloux, Metall. Trans. 5, 723 (1974).

    Article  Google Scholar 

  21. D.B. Dawson, Metall. Trans. A 12A, 791 (1981).

    Article  Google Scholar 

  22. E. Lee, A. Vasudevan, and K. Sadananda, Int. J. Fatigue 27, 1597 (2005).

    Article  Google Scholar 

  23. S. Baragetti, Surf. Interface Anal. 45, 1654 (2013).

    Article  Google Scholar 

  24. S. Baragetti, S. Cavalleri, and F. Tordini, Procedia Eng. 10, 2435 (2011).

    Article  Google Scholar 

  25. S. Baragetti, Materials 7, 4349 (2014).

    Article  Google Scholar 

  26. C. Soares, Gas Turbines: A Handbook of Air, Land and Sea Applications (Amsterdam: Elsevier, 2008).

    Book  Google Scholar 

  27. M.B. Zellner and J.G. Chen, Catal. Today 99, 299 (2005).

    Article  Google Scholar 

  28. M. Villegas, E.F. Castro Vidaurre, and J.C. Gottifredi, Chem. Eng. Res. Des. 94, 254 (2015).

    Article  Google Scholar 

  29. C.A. Córdova Geirdal, M.S. Gudjonsdottir, and P. Jensson, Geothermics 53, 1 (2015).

    Article  Google Scholar 

  30. R.S. Bellows, S. Muju, and T. Nicholas, Int. J. Fatigue 21, 687 (1999).

    Article  Google Scholar 

  31. K. Sadananda, S. Sarkar, D. Kujawski, and A.K. Vasudevan, Int. J. Fatigue 31, 1648 (2009).

    Article  Google Scholar 

  32. J.O. Peters, B.L. Boyce, X. Chen, J.M. McNaney, and J.W. Hutchinson, Eng. Fract. Mech. 69, 1425 (2002).

    Article  Google Scholar 

  33. D.B. Lanning, T. Nicholas, and A. Palazotto, Int. J. Fatigue 25, 835 (2003).

    Article  Google Scholar 

  34. N.E. Frost and D.S. Dugdale, J. Mech. Phys. Solids 5, 182 (1957).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Baragetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baragetti, S., Villa, F. Corrosion Fatigue of High-Strength Titanium Alloys Under Different Stress Gradients. JOM 67, 1154–1161 (2015). https://doi.org/10.1007/s11837-015-1360-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1360-5

Keywords

Navigation