Skip to main content

Advertisement

Log in

Application of the cruciform specimen geometry to obtain transverse interface-property data in a high-fiber-volume-fraction SiC/Titanium alloy composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A combined experimental and computational methodology was used to determine the relevant strength and residual-stress parameters in a manufactured, high-fiber-volume-fraction multiply metal matrix composite (MMC). The method was similar to that previously demonstrated on single-fiber composites, which had an extremely low fiber volume fraction. Variabilities in residual stresses and debond strengths in high-fiber-volume-fraction multiply composites, as well as current demands on the micromechanics-based computational prediction and validation of complex composite systems, necessitated the establishment of the test methodology described here. The model material chosen for this investigation was a plasma-processed six-ply, unidirectional Sigma-1240/Ti-6Al-2Sn-4Zr-2Mo (wt pct) MMC containing 32 vol pct continuous fibers. Room-temperature transverse tensile experiments were conducted on cruciform specimens. In addition, rectangular specimens were also evaluated in order to verify their applicability in obtaining valid interfacial property data. Debonding events, evaluated at different positions within a given specimen geometry, were captured by stress-strain curves and metallographic examination. Analytical and finite-element stress analyses were conducted to estimate the geometrical stress-concentration factors associated with the cruciform geometry. Residual stresses were estimated using etching and computational procedures. For the cruciform specimens, the experimental fiber-matrix debond strength was determined to be 22 MPa. Separation occurred within the carbon-rich interfacial layer, consistent with some previous observations on similar systems. Thus, the cruciform test methodology described here can be successfully used for transverse interfacial-property evaluation of high-fiber-volume-fraction composites. For the rectangular specimens, the strain gages at different positions along the specimen width confirmed that the interface crack had initiated from the free edge and propagated inward. Hence, rectangular specimens cannot be used for valid interface strength measurements in multiply composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Gundel, B.S. Majumdar, and D.B. Miracle: Metal Matrix Composites, Proc. 10th Int. Conf. on Composite Materials, Whistler, British Columbia, Canada, A. Poursartip and K.N. Street, eds., Woodhead Publishing, Ltd., Cambridge, United Kingdom, 1995, vol. 2, pp. 703–10.

    Google Scholar 

  2. D.B. Gundel, B.S. Majumdar, and D.B. Miracle: Scripta Metall. Mater., 1995, vol. 33, pp. 2057–65.

    Article  CAS  Google Scholar 

  3. S.G. Warrier, D.B. Gundel, B.S. Majumdar, and D.B. Miracle: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2035–43.

    CAS  Google Scholar 

  4. D.B. Gundel and D.B. Miracle: Composites Sci. Technol., 1998, vol. 58, pp. 1571–81.

    Article  CAS  Google Scholar 

  5. D.B. Gundel, S.G. Warrier, and D.B. Miracle: Acta Mater., 1997, vol. 45 (3), pp. 1275–84.

    Article  CAS  Google Scholar 

  6. B.S. Majumdar and G.M. Newaz: Phil. Mag. A, 1992, vol. 66, p. 187.

    Google Scholar 

  7. W.S. Johnson, S.J. Lubowinski, and A.L. Highsmith: ASTM STP 1080, ASTM, Philadelphia, PA, 1990, pp. 193–218.

    Google Scholar 

  8. R.P. Nimmer, R.J. Bankert, E.S. Russell, G.A. Smith, and P.K. Wright: J. Comp. Tech. Res., 1991, vol. 13, pp. 3–13.

    Article  CAS  Google Scholar 

  9. S. Krishnamurthy, P.R. Smith, and D.B. Miracle: Scripta Metall. Mater., 1994, vol. 31, pp. 653–58.

    Article  CAS  Google Scholar 

  10. S. Krishnamurthy, P.R. Smith, and D.B. Miracle: Air Force Technical Report No. WL-TR-95-4068, Wright-Patterson Air Force Base, OH, 1995, pp. 83–105.

  11. L.L. Shaw, P. Karpur, and T. Matikas: Composites, 1998, vol. 29B, pp. 331–39.

    CAS  Google Scholar 

  12. R.D. Kurtz and N.J. Pagano: Composites Eng., 1991, vol. 1, pp. 13–27.

    Article  Google Scholar 

  13. D.B. Bogy: J. Appl. Mech., 1971, pp. 377–86.

  14. B.S. Majumdar: Titanium Matrix Composites, S. Mall and T. Nicholas, ed., Technomic Publications, Lancaster, PA, 1997, pp. 113–68.

    Google Scholar 

  15. D.B. Miracle and B.S. Majumdar: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 301–06.

    CAS  Google Scholar 

  16. G.P. Tandon, R.Y. Kim, S.G. Warrier, and B.S. Majumdar: Composites, 1999, vol. 30B, pp. 115–34.

    Google Scholar 

  17. A. Needleman: Int. J. Fract., 1990, vol. 42, pp. 21–40.

    Article  Google Scholar 

  18. P.H. Guebelle: Int. J. Solids Struct., 1995, vol. 32, pp. 1003–16.

    Article  Google Scholar 

  19. S. Ghosh, Y. Ling, B.S. Majumdar, and R. Kim: Mech. Mater., 2000, vol. 32, pp. 561–91.

    Article  Google Scholar 

  20. R. Shatwell: DERA, Farnbrough, United Kingdom, private communication, 1998.

  21. E.W. Collings: The Physical Metallurgy of Titanium Alloys, ASM, Materials Park, OH, 1984, p. 16.

    Google Scholar 

  22. S.M. Pickard and D.B. Miracle: Mater. Sci. Eng., 1995, vol. A203, pp. 59–67.

    CAS  Google Scholar 

  23. C.J. Boehlert, B.S. Majumdar, S. Krishnamurthy, and D.B. Miracle: Metall. Mater. Trans., 1997, vol. 28A, pp. 309–23.

    CAS  Google Scholar 

  24. J.C. Halpin and S.W. Tsai: U.S. Air Force Materials Laboratory Report No. AFML-TR-67, Wright-Patterson Airforce Base, OH, 1967, p. 423.

  25. B.D. Agarwal and L.J. Broutman: Analysis and Performance of Fiber Composites, 2nd ed., John Wiley & Sons, Inc., New York, NY, 1990, pp. 156–65.

    Google Scholar 

  26. H. Gigemzer and P.K. Wright: Titanium Aluminide Composites, P.R. Smith, S.J. Balsone, and T. Nicholas, eds., Air Force Technical Report No. WL-TR-91-4020, Wright-Patterson Air Force Base, OH, 1991, pp. 251–64.

  27. R.P. Nimmer, P.A. Siemers, and M.R. Eggleston: Air Force Technical Report No. WL-TR-91-4020, P.R. Smith, S.J. Balsone, and T. Nicholas, eds., Wright-Patterson Air Force Base, OH, 1990, pp. 596–619.

  28. D.B. Gundel, S.G. Warrier, and D.B. Miracle: Composites Sci. Technol., 1999, vol. 5, pp. 1087–96.

    Article  Google Scholar 

  29. P. Rangaswamy, M.A.M. Bourke, P.K. Wright, N. Jayaraman, E. Kartzmark, and J.A. Roberts: Mater. Sci. Eng., 1997, vol. A224, pp. 200–09.

    CAS  Google Scholar 

  30. S.S. Hecker, C.H. Hamilton, and L.J. Ebert: J. Mater., JMLSA, 1970, vol. 5, pp. 868–900.

    Google Scholar 

  31. B.S. Majumdar, D.G. Gundel, R.E. Dutton, S.G. Warrier, and N.J. Pagano: J. Am. Ceram. Soc., 1998, vol. 81, pp. 1600–10.

    Article  CAS  Google Scholar 

  32. E.L. Hall and A.M. Ritter: J. Mater. Res., 1993, vol. 8 (5), pp. 1158–68.

    CAS  Google Scholar 

  33. G. Morscher, P. Pirouz, and A.H. Heuer: J. Am. Ceram. Soc., 1990, vol. 73 (3), pp. 713–20.

    Article  CAS  Google Scholar 

  34. K.L. Kendig: Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 1999.

    Google Scholar 

  35. X. Wu, C. Cooper, and P. Bowen: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1851–1860.

    Article  CAS  Google Scholar 

  36. X. Wu, H. Mori, and P. Bowen: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1841–1849.

    Article  CAS  Google Scholar 

  37. X.J. Ning and P. Pirouz: J. Mater. Res., 1991, vol. 6 (10), pp. 2234–48.

    CAS  Google Scholar 

  38. X.J. Ning and P. Pirouz: J. Am. Ceram. Soc., 1993, vol. 76 (8), pp. 2033–41.

    Article  CAS  Google Scholar 

  39. S.G. Warrier, B.S. Majumdar, D.B. Gundel, and D.B. Miracle: Acta Mater., 1997, vol. 45 (3), pp. 3469–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boehlert, C.J., Majumdar, B.S. & Miracle, D.B. Application of the cruciform specimen geometry to obtain transverse interface-property data in a high-fiber-volume-fraction SiC/Titanium alloy composite. Metall Mater Trans A 32, 3143–3155 (2001). https://doi.org/10.1007/s11661-001-0189-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0189-4

Keywords

Navigation