Skip to main content
Log in

Features and effect factors of creep of single-crystal nickel-base superalloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The creep behavior of two single-crystal nickel-base superalloys with [001] orientation has been studied by measuring the creep curves, internal friction stress of dislocation motion, transmission electron microscopy (TEM) observation and energy-dispersive X-ray analysis (EDAX) composition analysis. The results show that over the stress and temperature range, there are different creep activation energies, time exponents, and effective stress exponents in two alloys at different creep stages. The size and volume fraction of the γ′ phase in the tantalum-free alloy is obviously decreased with the elevated temperature. This results in the decrease of the internal friction stress during steady-state creep. Higher levels of tungsten in the alloy result in a smaller strain value and lower directional-coarsening rate during primary creep. During steady-state creep, the primary reason for the better creep resistance of the other alloy is that it contains more Al and also Ta, which maintains a high volume fraction of γ′ phase. The dislocation climb over the γ′ rafts is the major deformation mechanisms during steady-state tensile creep. The fact that the strain rate is decreased with the increase of the size and volume fraction of the γ′ rafts may be described by a modified constitutive equation that is based on a model of the rate of dislocation motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Caron, Y. Ohta, Y. Nakagawa, and T. Khan: Superalloys 1988, S. Reichman, D.N. Duhl, G. Maurer, S. Antolovich, and C. Lund, eds., TMS, Warrendale, PA, 1998, p. 215.

    Google Scholar 

  2. M.V. Nathal: Metall. Trans. A, 1987, vol. 18A, pp. 1961–70.

    CAS  Google Scholar 

  3. M.V. Nathal and L.J. Ebert: Metall. Trans. A, 1985, vol. 16A, pp. 427–39.

    CAS  Google Scholar 

  4. R.A. MacKay, M.V. Nathal, and D.D. Pearson: Metall. Trans. A, 1990, vol. 21A, pp. 381–88.

    CAS  Google Scholar 

  5. M.V. Nathal and L.J. Ebert: Metall. Trans. A, 1985, vol. 16A, pp. 1849–62.

    CAS  Google Scholar 

  6. M.V. Nathal and L.J. Ebert: Metall. Trans. A, 1985, vol. 16A, pp. 1863–82.

    CAS  Google Scholar 

  7. J.D. Nystrom, T.M. Pollock, W.H. Murphy, and A. Garg: Metall. Trans. A, 1997, vol. 28A, pp. 2443–52.

    Article  CAS  Google Scholar 

  8. X.H. Yu, Y. Yamabe-Mitaral, Y. Ro, and H. Harada: Metall. Trans. A, 2000, vol. 31A, pp. 173–78.

    Article  CAS  Google Scholar 

  9. T.M. Pollock: Mater. Sci. Eng., 1995, vol. B32, pp. 255–66.

    Article  CAS  Google Scholar 

  10. Y. Yamabe-Mitarai, Y. Ro, T. Maruko, and H. Harada: Metall. Mater. Trans. A, 1998, vol. 19A, p. 537–49.

    Article  Google Scholar 

  11. Y. Yamabe-Mitarai, Y. Koizumi, H. Murakami, Y. Ro, T. Maruko, and H. Harada: Script. Materiala, 1997, vol. 36, No. 4, pp. 393–98.

    Article  CAS  Google Scholar 

  12. H. Murakami, Y. Koizumi, T. Yokokawa, Y. Yamabe-Mitarai, T. Yamagata, and H. Harada: Mater. Sci. Eng., 1998, vol. A250, p. 109.

    CAS  Google Scholar 

  13. H. Rouault-Rogez, M. Dupeux, and M. Ignat: Acta Metall. Mater., 1994, vol. 42, p. 3137.

    Article  CAS  Google Scholar 

  14. C.N. Ahlquist and W.D. Nix: Acta Metall., 1971, vol. 19, p. 373.

    Article  Google Scholar 

  15. S.G. Tian, J.H. Zhang, H.C. Yang, Y.B. Xu, and Z.Q. Hu: Mater. Sci. Technol., 1998, vol. 14, p. 751.

    CAS  Google Scholar 

  16. S.G. Tian J.-H. Zhang, H.C. Yang, Y.B. Xu, and Z.Q. Hu: Mater. Sci. Eng., 1999, vol. A262, p. 271.

    CAS  Google Scholar 

  17. T.M. Pollock and A.S. Argon: Acta Metall. Mater., 1992, vol. 42, p. 1.

    Google Scholar 

  18. T.P. Gabb, S.L. Draper, D.R. Hull, R.A. MacKay, and M.V. Nathal: Mater. Sci. Eng. A, 1989, vol. A118, p. 59.

    CAS  Google Scholar 

  19. G.W. Qin and S.M. Hao: Acta Metall. Sinica (China), 1995, vol. 31 (11), p. B485.

  20. M.V. Nathal and R.A. MacKay: Mater. Sci. Eng., 1987, vol. 85, p. 127.

    Article  CAS  Google Scholar 

  21. J.P. Poirier: Plasticite a Haute Temperature des Solides Cristallins, Eyrolles, Paris, 1976.

    Google Scholar 

  22. M.V. Nathal, R.A. MacKay, and R.G. Garlick: Mater. Sci. Eng., 1985, vol. 75, p. 195.

    Article  CAS  Google Scholar 

  23. D.A. Grose and G.S. Ansell: Metall. Trans. A, 1981, vol. 12A, pp. 1631–45.

    Google Scholar 

  24. T. Khan, P. Caron, and C. Durel: Superalloys 1984: Proc. 5th Int. Symp. on Superalloys, M. Gell, C.S. Kortovich, R.H. Bricknel, W.B. Kent, and J.F. Radavich, eds., AIME, Warrendale, PA, 1984, p. 145.

    Google Scholar 

  25. A. Fredholm and J.L. Strudel: Superalloys. 1984: Proc. 5th Int. Symp. on Superalloys, M. Gell, C.S. Kortovich, R.H. Bricknel, W.B. Kent, and J.F. Radavich, eds., AIME, Warrendale, PA, 1984, p. 211.

    Google Scholar 

  26. R.L. Fleischer: Acta Metall., 1963, vol. 11, p. 203.

    Article  CAS  Google Scholar 

  27. S.G. Tian, H.H. Zhou, J.H. Zhang, H.C. Yang, Y.B. Xu, and Z.Q. Hu: Mater. Sci. Eng., 2000, vol. A279, p. 160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, S., Zhang, J., Xu, Y. et al. Features and effect factors of creep of single-crystal nickel-base superalloys. Metall Mater Trans A 32, 2947–2957 (2001). https://doi.org/10.1007/s11661-001-0169-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0169-8

Keywords

Navigation