Skip to main content
Log in

Simulation of the creep expansion of porous sandwich structures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Recently developed sandwich structures consist of a porous metal core sandwiched between two fully dense face sheets. These structures are produced by pressurizing a metal powder compact with an inert gas prior to consolidation by hot isostatic pressing (“hipping”). After consolidating and hot rolling the compact to a sheet form, a high-temperature annealing step is used to expand the internally pressurized gas-filled micropores. This expansion results in a porous core sandwich structure with integrally bonded face sheets. Recent experimental studies[1] with a Ti-6Al-4V porous core sandwich have indicated that the expansion rate exhibits a maximum during thermal ramping to 920 °C but then continued to expand over many hours at a constant temperature. Significant grain growth also accompanied the expansion. A microstructure-dependent creep model has been developed for a body containing a distribution of spheroidal pores. The body’s constitutive behavior is described by microstructure-dependent creep potentials for dislocation (power law) and diffusion-accommodated grain-boundary sliding (DAGS). It has been used to simulate the expansion of Ti-6Al-4V sandwich structures subjected to thermal cycles similar to those studied experimentally. The simulated response compared well with experimental results. The model was then used to identify an attainable core porosity as a function of the initial gas pressure and initial core relative density at the completion of the expansion process step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.T. Queheillalt, B.W. Choi, D.S. Schwartz, and H.N.G. Wadley: Metall. Mater. Trans. A, 2000, vol. 31A, p. 261.

    Article  CAS  Google Scholar 

  2. L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties, 2nd ed., Cambridge University Press, Cambridge, United Kingdom, 1997.

    Google Scholar 

  3. D.S. Schwartz, D.S. Shih, R.L. Lederich, R.L. Martin, and D.A. Deuser: Porous and Cellular Materials for Structural Applications, Materials Research Society Symposia Proceedings, D.S. Schwartz, D.S. Shih, H.N.G. Wadley, and A.G. Evans, eds., Materials Research Society, Warrendale, PA, 1998, vol. 521, p. 225.

    Google Scholar 

  4. I. Jin, L.D. Kenny, and H. Sang: U.S. Patent No. 4,973,358, Nov. 27, 1990.

  5. I. Jin, L.D. Kenny, and H. Sang: U.S. Patent No. 5,112,697, May 12, 1992.

  6. I. Jin, L.D. Kenny, and H. Sang: U.S. Patent No. 5,221,324, June 22, 1993.

  7. L.D. Kenny: U.S. Patent No. 5,281,251, June 25, 1994.

  8. H. Sang, L.D. Kenny, and I. Jin: U.S. Patent No. 5,334,236, Aug. 2, 1994.

  9. M. Thomas, L.D. Kenny, and H. Sang: U.S. Patent No. 5,622,542, Apr. 22, 1997.

  10. J.C. Elliot: U.S. Patent No. 2,751,289, Oct. 8, 1951.

  11. A.R. Valdo: U.S. Patent No. 3,756,303, Sept. 4, 1973.

  12. L.M. Niebylski and C.P. Jarema: U.S. Patent No. 3,790,365, Feb. 5, 1974.

  13. L.M. Niebylski, C.P. Jarema, and T.E. Lee: U.S. Patent No. 3,816,952, June 18, 1974.

  14. L.M. Niebylski and C.P. Jarema: U.S. Patent No. 3,847,591, Nov. 12, 1974.

  15. S.E. Speed: U.S. Patent No. 3,981,720, Sept. 21, 1976.

  16. S. Akiyama, H. Ueno, K. Imagawa, A. Katahara, S. Nagata, K. Morimoto, T. Nishikawa, and M. Itoh: European Patent No. 210803A1, Feb. 4, 1987.

  17. S. Akiyama, H. Ueno, K. Imagawa, A. Katahara, S. Nagata, K. Morimoto, T. Nishikawa, and M. Itoh: U.S. Patent No. 4,713,277, Dec. 15, 1987.

  18. S. Akiyama, H. Ueno, K. Imagawa, A. Katahara, S. Nagata, K. Morimoto, T. Nishikawa, and M. Itoh: European Patent No. 210803B1, Sept. 20, 1989.

  19. S. Morita and Y. Igarashi: U.S. Patent No. 5,462,612, Oct. 1, 1995.

  20. T. Masusa and S. Kanbayashi: U.S. Patent No. 5,482,533, Jan. 9, 1996.

  21. C.C. Yang, S.C. Chueh, K.C. Su, and T.H. Chion: U.S. Patent No. 5,632,319, May 27, 1997.

  22. R.L. Landingham: U.S. Patent No. 4,560,621, Dec. 24, 1985.

  23. J. Baumeister: DE Patent 4,018,360, 1991.

  24. J. Baumeister and H. Schrader: U.S. Patent No. 5,151,246, Sept. 29, 1992.

  25. H. Worz and H.P. Degisher: U.S. Patent No. 5,393,485, Feb. 28, 1995.

  26. C.J. Yu, H.H. Eifert, J. Banhart, and J. Baumeister: Mater. Res. Innovat., 1998, vol. 2, p. 181.

    Article  CAS  Google Scholar 

  27. V.I. Shapovalov and A.G. Timchenko: Fiz. Metall., 1993, vol. 76, p. 335.

    Google Scholar 

  28. V.I. Shapovalov: U.S. Patent No. 5,181,549, Jan. 26, 1993.

  29. V.I. Shapovalov: MRS Bull., 1994, vol. 19 (4), p. 24.

    CAS  Google Scholar 

  30. M.W. Kearns: U.S. Patent No. 4,659,546, Apr. 21, 1987.

  31. M.W. Kearns, P.A. Blenkinsop, A.C. Barber, and T.W. Farthing: Proc. 6th World Conf. on Titanium, Cannes, France, 1988, p. 667.

    Google Scholar 

  32. M.W. Kearns, P.A. Blenkinsop, A.C. Barber, and T.W. Farthing: Int. J. Powder Metall., 1988, vol. 24 (1), p. 59.

    CAS  Google Scholar 

  33. R.L. Martin and R.J. Lederich: Advances in Powder Metallurgy: Proc. 1991 Powder Metallurgy Conf. Exp., Powder Metallurgy Industries Federation, Princeton, NJ, 1991, p. 361.

    Google Scholar 

  34. R.L. Martin: U.S. Patent No. 5,564,064, Oct. 8, 1996.

  35. M.F. Ashby: Materials Selection in Mechanical Design, Pergamon, Oxford, United Kingdom, 1992.

    Google Scholar 

  36. F.R. Shanley: Weight-Strength Analysis of Aircraft Structures, Dover, New York, NY, 1960.

    Google Scholar 

  37. R. Vancheeswaren, D.M. Elzey, and H.N.G. Wadley: Acta Mater., 1996, vol. 44 (6), p. 2175.

    Article  Google Scholar 

  38. R. Vancheeswaren, D.G. Meyer, and H.N.G. Wadley: Acta Mater., 1997, vol. 45 (10), p. 4001.

    Article  Google Scholar 

  39. R. Vancheeswaren, D.M. Elzey, J.M. Kunze, and H.N.G. Wadley: Mater. Sci. Eng. A, 1998, vol. 244 p. 49.

    Article  Google Scholar 

  40. R. Vancheeswaren and H.N.G. Wadley: Mater. Sci. Eng. A, 1998, vol. 244, p. 58.

    Article  Google Scholar 

  41. M.F. Ashby: Mater. Sci. Technol., 1992, vol. 8 (2), p. 102.

    CAS  Google Scholar 

  42. E. Arzt, M.F. Ashby, and K.E. Easterling: Metall. Trans. A, 1983, vol. 14A pp. 211–21.

    Google Scholar 

  43. D.M. Elzey and H.N.G. Wadley: Acta Metall. Mater., 1993, vol. 41 (8), p. 2297 (references within).

    Article  CAS  Google Scholar 

  44. B.J. Lee and M.E. Mear: J. Mech. Phys. Solids, 1992, vol. 40 (8), p. 1805.

    Article  Google Scholar 

  45. J.M. Duva and P.D. Crow: Acta Metall. Mater., 1992, vol. 40 (1), p. 31.

    Article  CAS  Google Scholar 

  46. J.M. Duva and P.D. Crow: Mech. Mater., 1994, vol. 17 (1), p. 25.

    Article  Google Scholar 

  47. M.F. Ashby and R.A. Verall: Acta Metall., 1973, vol. 21 (2), p. 149.

    Article  CAS  Google Scholar 

  48. F.R.N. Nabarro: The Physics of Creep: Creep and Creep Resistant Alloys, Taylor & Francis, London, 1995.

    Google Scholar 

  49. J. Cadek: Creep of Metallic Materials, Elsevier, New York, NY, 1988.

    Google Scholar 

  50. R.W. Evans and B. Wilshire: Creep of Metals and Alloys, Institute of Metals, London, 1985.

    Google Scholar 

  51. J.P. Poirier: Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics, and Minerals, Cambridge University Press, Cambridge, United Kingdom, 1985.

    Google Scholar 

  52. H.E. Evans: Mechanisms of Creep Fracture, Elsevier, New York, NY, 1984.

    Google Scholar 

  53. D.S. Wilkinson and M.F. Ashby: Acta Metall., 1975, vol. 23 (11) p. 1277.

    Article  CAS  Google Scholar 

  54. A.C.F. Cocks: J. Mech. Phys. Solids, 1989, vol. 37, p. 693.

    Article  Google Scholar 

  55. P. Ponte Castaneda: J. Mech. Phys. Solids, 1991, vol. 39 p. 45.

    Article  Google Scholar 

  56. P. Sofronis and R.M. McMeeking: J. Appl. Mech., 1992, vol. 59 (2) p. S88.

  57. Y. Liu, H.N.G. Wadley, and J.M. Duva: Acta Metall. Mater., 1994, vol. 42 (7) p. 2247.

    Article  CAS  Google Scholar 

  58. J.M. Warren and H.N.G. Wadley: Acta Metall. Mater., 1995, vol. 43 (7) p. 2773.

    Article  CAS  Google Scholar 

  59. J.E. Burke and D. Turnbull: Progr. Met. Phys., 1952, vol. 3 p. 220.

    Article  CAS  Google Scholar 

  60. M. Hillert: Acta Metall., 1965, vol. 13 p. 227.

    Article  CAS  Google Scholar 

  61. MATLAB™, The Math Works, Inc., Natick, MA, www.mathworks.com.

  62. B. Budiansky, J.W. Hutchinson, and S. Slutsky: in Mechanics of Solids, H.G. Hopkins and M.J. Sewell, eds., Pergamon Press, Oxford, United Kingdom, 1982, p. 13.

    Google Scholar 

  63. D.S. Schwartz: Boeing Company, St. Louis, MO, private communication, 1998.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vancheeswaram, R., Queheillalt, D.T., Elzey, D.M. et al. Simulation of the creep expansion of porous sandwich structures. Metall Mater Trans A 32, 1813–1821 (2001). https://doi.org/10.1007/s11661-001-0157-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0157-z

Keywords

Navigation