Skip to main content
Log in

Snoek relaxation and dislocation damping in aged Fe-Cu-Ni steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We studied the Snoek relaxation and ultrasonic shear-wave attenuation in steels containing 1.29 at. pct Cu subjected to various isothermal agings. The steel’s hardness increases with aging time, then, after reaching a maximum, it decreases. The peak hardness was 17 pct higher than in the nonaged material. Aging embrittlement is caused by bcc copper clusters precipitated from the ferrite iron crystal. Using a forced-vibration torsion-pendulum method, we studied the aging effect on the Snoek-relaxation characteristics: the internal-friction spectrum (peak position and strength) and decay of the maximum internal friction after quenching from 723 K. We observed a broad nonsymmetrical peak centered near 0.1 Hz at room temperature that could be decomposed into three Debye peaks. The decay rate showed a correlation with hardness; faster decay occurred in the higher-hardness steel. Also, we observed a monotonical decrease of ultrasonic attenuation after quenching, indicating carbon atoms diffusing to dislocations. We interpreted our Snoek-relaxation results in terms of Nowick’s theory of interstitial/substitutional-solute interactions. Concerning analysis of the decay measurements, we used the Granato-Hikata-Lücke (GHL) theory and the Cottrell-Bilby (CB) t 2/3 model, which well explained the measurements and allowed us to estimate the evolution of dislocation density with aging. The transmission electron microscopy (TEM) observations supported this.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Hornbogen: Trans. ASM, 1964, vol. 57, pp. 120–32.

    Google Scholar 

  2. S. Goodman, S. Brenner, and J. Low: Metall. Trans., 1973, vol. 4, pp. 2363–69.

    CAS  Google Scholar 

  3. P. Othen, M. Jenkins, and G. Smith: Phil. Mag. A, 1994, vol. 70, pp. 1–24.

    CAS  Google Scholar 

  4. S. Thompson and G. Krauss: Metall. Mater. Trans. A, 1996, vol. 27, pp. 1573–88.

    Google Scholar 

  5. A. Youle and B. Ralph: Met. Sci., 1972, vol. 6, pp. 149–52.

    Article  CAS  Google Scholar 

  6. Y. Osetsky and A. Serra: Phil. Mag. A, 1996, vol. 73, pp. 249–63.

    CAS  Google Scholar 

  7. M. Ludwig, D. Farkas, D. Pedraza, and S. Schmauder: Modelling Simul. Mater. Sci. Eng., 1998, vol. 6, pp. 19–28.

    Article  CAS  Google Scholar 

  8. K. Tagashira and K. Takazawa: Iron Steel Inst. Jpn. Int., 1998, vol. 38, pp. 875–80.

    CAS  Google Scholar 

  9. M.K. Miller, K.F. Russell, P. Pareige, M. Starink, and R.C. Thomson: Mater. Sci. Eng. A, 1998, vol. 250, pp. 49–54.

    Article  Google Scholar 

  10. A. Nowick and B. Berry: Anelastic Relaxation in Crystalline Solids, Academic Press, New York, NY, 1972.

    Google Scholar 

  11. M. Hirao, H. Ogi, and H. Fukuoka: Rev. Sci. Instrum., 1993, vol. 64, pp. 3198–3205.

    Article  CAS  Google Scholar 

  12. H. Ogi, M. Hirao, and T. Honda: J. Acoust. Soc. Am., 1995, vol. 98, pp. 458–64.

    Article  Google Scholar 

  13. M. Hirao and H. Ogi: Ultrasonics, 1997, vol. 35, pp. 413–21.

    Article  CAS  Google Scholar 

  14. L.B. Magalas and G. Fantozzi: J. Phys. IV, 1996, vol. 6, pp. C8-C151.

    Google Scholar 

  15. R. Chang: J. Phys. Chem. Solids, 1964, vol. 25, pp. 1081–90.

    Article  CAS  Google Scholar 

  16. A. Nowick: J. Phys. Chem. Solids, 1970, vol. 31, pp. 1819–26.

    Article  CAS  Google Scholar 

  17. M. Koiwa: Phil. Mag., 1971, vol. 24, pp. 81–106.

    CAS  Google Scholar 

  18. A. Nowick: J. Phys. Chem. Solids, 1973, vol. 34, pp. 1507–21.

    Article  CAS  Google Scholar 

  19. H. Numakura and M. Koiwa: J. Phys. IV, Coll. C8, 1996, vol. 6, pp. 97–106.

    CAS  Google Scholar 

  20. T. Nishizawa, K. Ishida, H. Ohtani, C. Kami, and M. Suwa: Scand. J. Metall., 1991, vol. 20, pp. 62–71.

    CAS  Google Scholar 

  21. A. Nowick: Scripta Metall., 1973, vol. 7, pp. 289–94.

    Article  CAS  Google Scholar 

  22. A. Granato, A. Hikata, and K. Lücke: Acta Metall., 1958, vol. 6, pp. 470–80.

    Article  CAS  Google Scholar 

  23. A. Granato and K. Lücke: J. Appl. Phys., 1956, vol. 27, pp. 583–93.

    Article  Google Scholar 

  24. A. Cottrell and B. Bilby: Proc. Phys. Soc. A, 1949, vol. 62, pp. 49–62.

    Article  Google Scholar 

  25. S. Harper: Phys. Rev., 1951, vol. 83, pp. 709–12.

    Article  CAS  Google Scholar 

  26. F. Ham: J. Appl. Phys., 1959, vol. 30, pp. 915–26.

    Article  CAS  Google Scholar 

  27. R. Bullough and R. Newman: Proc. R. Soc. A, 1962, vol. 266, pp. 198–208.

    Google Scholar 

  28. R. Bullough and R. Newman: Proc. R. Soc. A, 1962, vol. 266, pp. 209–21.

    Google Scholar 

  29. R. Bullough and R. Newman: Rep. Progr. Phys., 1970, vol. 33, pp. 101–48.

    Article  Google Scholar 

  30. X. Xin, G. Daehn, and R. Wagoner: Acta Mater., 1998, vol. 46, pp. 6131–44.

    Article  CAS  Google Scholar 

  31. J. Friedel: Dislocations, Pergamon Press, Oxford, United Kingdom, 1964, p. 273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogi, H., Ledbetter, H. & Kim, S. Snoek relaxation and dislocation damping in aged Fe-Cu-Ni steel. Metall Mater Trans A 32, 1671–1677 (2001). https://doi.org/10.1007/s11661-001-0145-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0145-3

Keywords

Navigation