Skip to main content
Log in

Effects of mechanical loading on the magnetic and dynamic properties of engineering materials

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The influence of strain on the magnetic and dynamic properties of ARMCO iron has been characterized by Mössbauer spectroscopy and by Nuclear Inelastic Scattering of synchrotron radiation. The Mössbauer spectra, taken in backscattering geometry, reveal that the magnetic texture in these materials is depending on the type of mechanical loading, monotonic or cyclic, respectively. The applicability of Nuclear Inelastic Scattering for the investigation of the dynamic properties of these macroscopic bulk-engineering materials is shown. The so obtained phonon density of states of a monotonically loaded specimen shows slight differences in its shape and spectral features in comparison to the initial state. An influence of dislocations is also reflected in theoretically calculated phonon density of states based on classical molecular dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis, J. R.: Tensile Testing, Materials Park. ASM International, Ohio (2004)

    Google Scholar 

  2. Dowling, N. E.: Mechanical behavior of materials: engineering methods for deformation, fracture, fatigue. Pearson, Boston (2012)

  3. Perevertov, O.: Influence of the residual stress on the magnetization process in mild steel. J. Phys. D.: Appl. Phys. 40, 949–954 (2007)

    Article  ADS  Google Scholar 

  4. Grad, P., Reuscher, B., Brodyanski, A., Kopnarski, M., Kerscher, E.: Mechanism of fatigue crack initiation and propagation in the very high cycle fatigue regime of high-strength steels. Scripta Materialia 67, 838–841 (2012)

    Article  Google Scholar 

  5. Chumakov, A. I., Sturhahn, W.: Experimental aspects of inelastic nuclear resonance scattering. Hyp. Interact. 123/124, 781–808 (1999)

    Article  Google Scholar 

  6. Smaga, M., Scherthan, L., Auerbach, H., Wolny, J. A., Schünemann, V., Beck, T.: Magneto-mechanical behavior of iron during monotonic and cyclic loading. Solid State Phenomena 258, 456–459 (2017)

    Article  Google Scholar 

  7. Klingelhöfer, G., Morris, R. V., Bernhardt, B., Rodinov, D., de Souza, P.A. Jr, Squyres, S. W., Foh, J., Kankeleit, E., Bonnes, U., Gellert, R., Schröder, C., Linkin, S., Evlanov, E., Zubkov, B., Prilutski, O.: Athena MIMOS II Mössbauer spectrometer investigation. J. Geohphys. Res. 108, 8067 (2003)

    ADS  Google Scholar 

  8. Brand, R.A.: Winnormos-For-Igor, 3.0. University Duisburg, Duisburg (2009)

    Google Scholar 

  9. Kohn, V., Chumakov, A.: DOS: Evaluation of phonon density of states from nuclear resonant inelastic absorption. Hyperfine Interact. 125, 205–221 (2000)

    Article  Google Scholar 

  10. Slimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  ADS  Google Scholar 

  11. Mendelev, M., Han, S., Srolovitz, D.J., Ackland, G.J., Sun, D.Y., Asta, M.: Development of new interatomic potentials appropriate for crystalline and liquid iron. Phil. Mag. 83, 3977–3994 (2003)

    Article  ADS  Google Scholar 

  12. Gütlich, P., Bill, E., Trautwein, A. X.: Mössbauer Spectroscopy and Transition Metal Chemistry. Springer, Berlin (2011)

    Book  Google Scholar 

  13. Keune, W.: Application of Mössbauer spectroscopy in magnetism. Hyp. Interact. 204, 13–45 (2012)

    Article  ADS  Google Scholar 

  14. de Oliveira, L., da Cunha, J.B.M., Spada, E.R., Hallouche, B.: Mössbauer spectroscopy and magnetic properties in thin films of Fe x Ni100−x electroplated on silicon (1 0 0). Appl. Surf. Sci. 254, 347–350 (2007)

    Article  ADS  Google Scholar 

  15. Madsen, M.B., Bertelsen, P., Goetz, W., Binau, C.S., Olsen, M., Folkmann, F., Gunnlaugsson, H.P., Kinch, K.M., Knudsen, J.M., Merrison, J., Nornberg, P., Squyres, S.W., Yen, A.S., Rademacher, J.D., Gorevan, S., Myrick, T., Bartlett, P.: Magnetic Properties Experiments on the Mars Exploration Rover Mission. J. Geophys. Res. 108, 8069 (2003)

    Article  Google Scholar 

  16. Olszewski, W., Szymański, K., Satula, D., Dobrzyński, L.: Magnetic texture determination by CEMS with polarized radiation. Nukleonika 52, 17–19 (2007)

    Google Scholar 

  17. Sturhahn, W., Toellner, T.S., Alp, E.E., Zhang, X., Ando, M., Yoda, Y., Kikuta, S., Seto, M., Kimball, C.W., Dabrowski, B.: Phonon density of states measured by inelastic nuclear resonant scattering. Phys. Rev. Lett. 74, 3832–3835 (1995)

    Article  ADS  Google Scholar 

  18. Talati, M., Posselt, M., Bonny, G., Al-Motasem, A., Bergner, F.: Vibrational contribution to the thermodynamics of nanosized precipitates: vacancy-copper clusters in bcc-Fe. J. Phys.: Condens. Matter 24, 225402–225410 (2012)

    ADS  Google Scholar 

  19. Lübbers, R.: Magnetism and Lattice Dynamics Under High Pressure Studied by Nuclear Resonant Scattering of Synchrotron Radiation. Dissertation University Paderborn (2000)

  20. Tanis, E.A.: Partial phonon density of states of 57-iron and 161-dysprosium in DyFe3 by nuclear resonant inelastic X-ray scattering under high pressure. University of Nevada, Las Vegas: Master Thesis (2010)

  21. Shen, G., Sturhahn, W., Alp, E.E., Zhao, J., Toellner, T.S., Prakapenka, V.B., Meng, Y., Mao, H.-R.: Phonon density of states in iron at high pressures and high temperatures. Phys. Chem. Minerals 31, 353–359 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgemnents

This work has been supported by the German Research Foundation (DFG) within the SFB/TRR 173 “SPIN + X” and by DESY via experiment No. 11001564. The authors thank Dr. R. A. Brand from the University of Duisburg for his support using the WinNormos Software

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Scherthan.

Additional information

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2017), Saint-Petersburg, Russia, 3–8 September 2017 Edited by Valentin Semenov

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 92.5 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scherthan, L., Auerbach, H., Deldar, S. et al. Effects of mechanical loading on the magnetic and dynamic properties of engineering materials. Hyperfine Interact 238, 103 (2017). https://doi.org/10.1007/s10751-017-1459-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-017-1459-x

Keywords

Navigation