Skip to main content
Log in

Effects of microstructural evolution on superplastic deformation characteristics of a rapidly solidified Al-Li alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study is concerned with the effects of microstructural modification on superplastic deformation characteristics of a rapidly solidified (RS) Al-3Li-1Cu-0.5Mg-0.5Zr (wt pct) alloy. This Al-Li alloy has a very fine grain structure desirable for improved superplasticity. The results of superplastic deformation indicated that the alloy exhibited a high superplastic ductility, e.g., elongation of approximately 800 pct, when deformed at temperatures above 500 °C and at the strain rates of 10−2/s to 10−1/s. Such a high strain rate is quite advantageous for the practical superplastic forming application of the alloy. Stress-strain rate curves were obtained by performing a series of load relaxation tests in the temperature range from 460 °C to 520 °C in order to examine the superplastic deformation behavior and to establish its mechanisms. The stress-strain rate curves could be separated into two parts according to their respective physical mechanisms, i.e., grain matrix deformation and grain boundary sliding, as was proposed in a new superplasticity theory based on internal deformation variables. The microstructural evolution during superplastic deformation was also analyzed by using transmission electron microscopy. During superplastic deformation, grains were kept fine and changed into equiaxed ones due to the presence of fine secondary phase particles and the continuous recrystallization due to the development of subgrains. Consequently, the rapidly solidified (RS) alloy showed much improved superplasticity compared to the conventional ingot cast 8090 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Wert, N.E. Paton, C.H. Hamilton, and M.W. Mahoney: Metall. Trans. A, 1981, vol. 12A, pp. 1267–76.

    Google Scholar 

  2. E.W. Lee, T.R. McNelley, and A.F. Stengel: Metall. Trans. A, 1986, vol. 17A, pp. 1043–50.

    CAS  Google Scholar 

  3. E. Nes: Int. Conf. on Superplasticity, Grenoble, Sept. 15–19, 1985, CNRS, Paris, 1985, pp. 7.1–7.15.

    Google Scholar 

  4. T.K. Ha and Y.W. Chang: Scripta Metall., 1995, vol. 32, pp. 808–14.

    Google Scholar 

  5. H.P. Pu and J.C. Huang: Scripta Metall., 1995, vol. 33, pp. 383–89.

    Article  CAS  Google Scholar 

  6. H. Garmestani, P. Kalu, and D. Dingley: Mater. Sci. Eng. A, 1998, vol. A242, pp. 284–91.

    CAS  Google Scholar 

  7. R.Z. Valiev, D.A. Salimonenko, and N.K. Tsenev: Scripta Mater., 1997, vol. 37, pp. 1945–50.

    Article  CAS  Google Scholar 

  8. S. Fijino, N. Kuroishi, M. Yoshino, T. Mukai, Y. Okanda, and K. Higashi: Scripta Mater., 1997, vol. 37, pp. 673–78.

    Article  Google Scholar 

  9. W.J. Kim, K. Higashi, and J.K. Kim: Mater. Sci. Eng. A, 1999, vol. A260, pp. 170–77.

    CAS  Google Scholar 

  10. T. Hasegawa, T. Yasuno, T. Nagai, and T. Takahashi: Acta Mater., 1998, vol. 46, pp. 6001–07.

    Article  CAS  Google Scholar 

  11. R.S. Mishra, T.R. Bieler, and A.K. Mukherjee: Acta Mater., 1995, vol. 43, pp. 877–91.

    Article  CAS  Google Scholar 

  12. R.S. Mishra, T.R. Bieler, and A.K. Mukherjee: Acta Mater., 1997, vol. 45, pp. 561–68.

    Article  CAS  Google Scholar 

  13. G.H. Stijbos and W.H. Kool: Mater. Sci. Eng. A, 1995, vol. A194, pp. 129–36.

    Google Scholar 

  14. N. Chandra and P. Dang: Scripta Mater., 1997, vol. 36, pp. 1327–32.

    Article  CAS  Google Scholar 

  15. T.K. Ha and Y.W. Chang: Acta Mater., 1998, vol. 46, pp. 2741–2749.

    Article  CAS  Google Scholar 

  16. N.J. Kim, S.K. Das: in Science and Technology of Rapidly Quenched Alloys, M. Tenhover, L.E. Tanner, and W.L. Johnson, eds., MRS, Pittsburgh, PA, 1987, pp. 213–24.

    Google Scholar 

  17. N.J. Kim, R.L. Bye, D.J. Skinner, and C.M. Adam: in Rapidly Solidified Materials, P.W. Lee and R.S. Carbonare, eds., ASM, New York, NY, 1986, pp. 367–71.

    Google Scholar 

  18. D. Lee and E.W. Hart: Metall. Trans. A, 1971, vol. 2A, pp. 1245–48.

    Google Scholar 

  19. D.S. Wilkinson and C.H. Caceres: Acta Metall., 1984, vol. 32, pp. 1335–45.

    Article  CAS  Google Scholar 

  20. M.K. Rabinovich and V.G. Trifonov: Acta Mater., 1996, vol. 44, pp. 2073–78.

    Article  CAS  Google Scholar 

  21. B.A. Ash and C.H. Hamilton: Scripta Metall, 1988, vol. 22, pp. 277–82.

    Article  CAS  Google Scholar 

  22. Y. Umakashi, W. Fujitani, T. Nakano, A. Inoue, K. Othera, T. Mukai, and K. Higashi: Acta Mater., 1998, vol. 46, pp. 4469–78.

    Article  Google Scholar 

  23. N.J. Kim, D.J. Skinner, K. Okazaki, and C.M. Adam: in Aluminum-Lithium Alloys III, C. Baker, P.J. Gregson, S.J. Harris, and C.J. Peel, eds., The Institute of Metals, London, 1986, pp. 78–84.

    Google Scholar 

  24. N.E. Paton, C.H. Hamilton, J. Wert, and M. Mahoney: J. Met., 1982, vol. 34, pp. 21–27.

    CAS  Google Scholar 

  25. R.Z. Valiev and O.A. Kaibyshev: Acta Metall., 1983, vol. 31, pp. 2121–28.

    Article  CAS  Google Scholar 

  26. I.I. Novikov, V.K. Portnoy, and V.S. Levchenko: Acta Metall., 1981, vol. 29, pp. 1077–90.

    Article  CAS  Google Scholar 

  27. R.Z. Valiev and T.G. Langdon: Acta Metall. Mater., 1993, vol. 41, pp. 949–54.

    Article  CAS  Google Scholar 

  28. Y.N. Kwon and Y.W. Chang: Metall Mater. Trans. A, 1999, vol. 30A, pp. 2037–47.

    Article  CAS  Google Scholar 

  29. Y.N. Kwon: Ph.D. Dissertation, POSTECH, Pohang, Korea, 1999.

    Google Scholar 

  30. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps, Pergamon Press, Oxford, United Kingdom, 1982, pp. 21–22.

    Google Scholar 

  31. M. Mabuchi and K. Higashi: Scripta Mater., 1996, vol. 34, pp. 1893–97.

    Article  CAS  Google Scholar 

  32. M.W. Mahoney and A.K. Ghosh: Metall. Trans. A, 1987, vol. 18A, pp. 653–61.

    CAS  Google Scholar 

  33. F.U. Enikeev: Mater. Sci. Eng. A, 2000, vol. A276, pp. 22–31.

    CAS  Google Scholar 

  34. G.S. Murty and M.J. Koczak: Mater. Sci. Eng. A., 1988, vol. 100A, pp. 37–43.

    Article  Google Scholar 

  35. F.A. Mohamed, S. Shei, and T.G. Langdon: Acta Metall., 1975, vol. 23, pp. 1443–50.

    Article  CAS  Google Scholar 

  36. A.K. Mukherjee: Mater. Sci. Eng. A., 1971, vol. 8A, pp. 83–89.

    Article  Google Scholar 

  37. M. Mabuchi and K. Higashi: Phil. Mag. Lett., 1994, vol. 70, pp. 1–6.

    CAS  Google Scholar 

  38. M. Mabuchi, K. Higashi, and T.G. Langdon: Acta Mater., 1994, vol. 42, pp. 1739–45.

    Article  CAS  Google Scholar 

  39. K. Tsuzaki, H. Xiaoxu, and T. Maki: Acta Mater., 1996, vol. 44, pp. 4491–99.

    Article  CAS  Google Scholar 

  40. X. Zhang and M.J. Tan: Scripta Mater., 1998, vol. 38, pp. 827–31.

    Article  CAS  Google Scholar 

  41. L. Qing, H. Xiaoxu, Y. Jinfeng, and Y. Mei: J. Mater. Sci. Lett., 1989, vol. 10, p. 779.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namkwon, Y., Koh, H.J., Lee, S. et al. Effects of microstructural evolution on superplastic deformation characteristics of a rapidly solidified Al-Li alloy. Metall Mater Trans A 32, 1649–1658 (2001). https://doi.org/10.1007/s11661-001-0143-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0143-5

Keywords

Navigation